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Abstract. The problem of integrating databases and programming lan-
guages has been open for nearly 45 years. During this time much progress
has been made, in exploring specialized database programming languages,
orthogonal persistence, object-oriented databases, transaction models,
data access libraries, embedded queries, and object-relational mapping.
While new solutions are proposed every year, none has yet proven fully
satisfactory. One explanation for this situation is that the problem itself
is not sufficiently well defined, so that partial solutions continue to be
proposed and evaluated based upon incomplete metrics, making directed
progress difficult. This paper is an attempt to clarify the problem, rather
than propose a new solution. We review issues that arise on the boundary
between programming languages and databases, including typing, opti-
mization, and reuse. We develop specific criteria for evaluating solutions
and apply these to the solution approaches mentioned above. The anal-
ysis shows that progress has been made, yet the key problem of meeting
all the criteria simultaneously remains open.

Updated 10/12/2005.

So the solution’s easy enough; each of us stays put in his or her corner
and takes no notice of the others. You here, you here, and I there. Like
soldiers at our posts. Also, we mustn’t speak. Not one word. That won’t
be difficult; each of us has plenty of material for self-communings.
– Huis Clos (No Exit) by Jean Paul Sartre

1 Introduction

Programs that use databases are a critical part of our information infrastruc-
ture. These systems generally use programming languages for general-purpose
? This material is based upon work supported by the National Science Foundation
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computation and databases to control concurrent access to data, search large
amounts of data, and/or update data reliably and securely. Such systems are
increasingly being developed using procedural object-oriented languages and re-
lational databases. For scalability and reliability, multiple application servers
typically communicate with a shared, replicated database server.

Procedural languages and database query languages are based on different
semantic foundations and optimization strategies. These differences are known
informally as “impedance mismatch” [32]: imperative programs versus declar-
ative queries, compiler optimization versus query optimization, algorithms and
data structures versus relations and indexes, threads versus transactions, null
pointers versus nulls for missing data, and different approaches to modular-
ity and information hiding. Because databases and programming languages can
perform many of the same tasks, developers must make difficult architectural
decisions about how to organize and partition system functionality. Distributed
execution also requires efficient structuring and management of specialized com-
munication patterns. As a result, applications that access databases are awkward
to design and develop. Programming languages do not facilitate effective use of
databases, and attaining good performance usually requires careful optimization
based on expert knowledge, which can make programs difficult to maintain and
evolve.

The primary contribution of this paper is a better understanding of impedance
mismatch, or the problem of integrating databases and programming languages.
We examine issues that affect the boundary between programming languages
and databases to create a list of criteria for evaluating solutions. The criteria
fall into three main categories: typing, optimization and reuse. In selecting the
criteria, we rely on our experience in developing commercial data-oriented appli-
cations and applying the theory of programming languages and databases. The
selection process is inherently subjective, but we measure the criteria by their
ability to make useful distinctions between different solution approaches.

We apply our criteria to a range of specific solutions to impedance mis-
match, including object-oriented databases, object-relational mappers, data ac-
cess APIs, orthogonally persistent programming languages, and embedded query
languages. We consider approaches that involve modifications to either the pro-
gramming language or database side of the interface. Our criteria, however,
measures both programming language and database issues, so a solution that
provides a clean programming model but no database-style optimizations will
not be counted as a successful solution to impedance mismatch.

In summarizing our findings, we identify areas where significant progress
has been made, but also point out specific areas where more work is required.
The proposed criteria provide a useful basis for understanding the decisions
made by architects in selecting solutions for integrating programming languages
and databases, and a guide for future research. We believe that the key to the
complexity of impedance mismatch is the difficulty of meeting all the criteria
simultaneously.
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2 Related Work

This section reviews papers that have focused on clarifying the problems in-
volved in integrating languages and databases. Specific integration solutions are
discussed in the body of the paper.

In 1987, Atkinson & Buneman [6] reviewed early work on integrating pro-
gramming languages and databases; their focus on creating a clean, uniform
programming model for persistent data provided a framework for later research.
David Maier [32] stated a key requirement for solving impedance mismatch:
“Whatever the database programming model, it must allow complex, data-
intensive operations to be picked out of programs for execution by the storage
manager, rather than forcing a record-at-a-time interface.” Bloom and Zdonik
[12] identified cultural and technical differences, including the handling of con-
sistency, triggers, optimization, and data scaling. The object-oriented database
system manifesto [4] did not include any requirements on how OODBs would
interface with programming languages, or list performance as a top-level re-
quirement. Ten years later, Carey & DeWitt predicted the demise of persistent
programming languages and object-oriented databases, and the ultimate suc-
cess of object-relational databases [14]. They also identified the integration of
databases and programming languages, which they called client integration, as
one of five key research challenges. Atkinson reviewed the difficulty of experi-
mental validation of a new approach to persistence [5].

Jordan [29] compares persistence frameworks for the Java platform. Jordan
defines an implementation of the OO7 benchmark as a java program manipulat-
ing in-memory java objects [15]. This benchmark is then used as the standard
for qualitative and quantitative comparison. Unfortunately, the OO7 benchmark
only models a single-user, so the critical issue of concurrency control is not ad-
dressed. Jordan also assumes that all data can fit in memory. Finally, the OO7
benchmark is not representative of the most common operations in typical trans-
actional/enterprise applications because 007 is focused on extensive traversals
of hierarchical structures. OO7 was created to test the kind of specialized ap-
plications for which object-oriented databases were designed. Jordan provides
performance numbers but does not summarize his qualitative analysis. In this
survey we do not provide performance numbers. Instead we assume that pro-
gramming languages should enable access to database optimizations, and provide
a qualitative analysis of how effective they are at providing this access.

3 Typing

Difficulty in aligning types between programming languages and databases is
traditionally viewed as a key cause of impedance mismatch.

Both programming languages and databases have support for primitive types
and data structures. While the details of mapping between different represen-
tations of data can cause annoying problems, at a conceptual level the model
of data in a database and in a programming language are compatible. This is
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class Employee { class Department {
String name; String name;

float salary; Set<Employee> employees;

Department department; Employee manager;

} }

Fig. 1. Example database schema defined via classes

not surprising, given the universality of techniques for structuring data. While
the data and types are compatible, there are still significant issues in the static
typing of queries and composite programs.

3.1 Data Mapping (T1)

Primitive types in a programming language typically do not correspond to the
types in a database, and usually primitive types differ between databases. For
example, SQL-92 does not define the absolute precision of many numeric types.
Operations may also be inconsistent; a common example is international string
comparisons.

Techniques for mapping classes to relational databases has been subject to
extensive research and development [1]. In summary, the most common approach
is to define mappings between an entity/relationship (ER) model and an object
oriented class model. An ER model provides a logical view of the structure of a
relational database. In a ER model, attributes represent primitive data values
like strings and integers. These are mapped to object instance members in the
object-oriented model. Relationships in the ER model are mapped to references
between objects. A multi-valued relationship is a collection of references. Sub-
typing in an object-oriented model can also be represented within an ER model.
In some cases there are several ways in which the mapping can be performed,
and the resulting design decisions are typically based on performance or other
issues.

For example, a simple model of employees and departments is defined in Fig-
ure 1 as a pair of Java classes. In database terms, the department and employees
fields represent a one-to-many relationship between Departments and Employees.

Persistence for Methods When considering a mapping between objects and
databases, some researchers have proposed that the methods of an object should
be stored persistently in addition to the object state [7]. Research has even fo-
cused on allowing threads, user interface controls, or network connections to be
persistent [30]. Given that the integration of state and behavior is one of the key
concepts in object-oriented programming, it can be argued that a persistence
mapping that does not store behavior/methods violates the basic principles of
object-oriented programming. On the other hand, separation of data and be-
havior has proven quite useful in the design and evolution of data-intensive
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applications. This question is unresolved, and in this survey we do not propose
any criteria for evaluating the utility of persistence for methods.

3.2 Interpretation of Null Values (T2)

Nulls in SQL behave differently from nulls in most procedural object oriented
languages. In SQL, null represents “unknown”, thus primitive operations such
as addition or conjunction will return null if either operand is null. For example
x == null always returns null even if x is null. On the other hand, aggregate
SQL functions such as sum ignore nulls. Object-oriented programming languages
typically allow object references to be null, but primitive types like integer cannot
be null. Relational joins also treat null as “unknown” – but dereferencing a null
pointer in an object-oriented language typically throws an exception.

Some languages, like C++ and C#, allow definitions of user-defined data
types that match database semantics but can be used in place of the built-
in programming language types. Not all programming languages are able to
seamlessly integrate foreign types in this way.

4 Static Typing (T*)

Static typing is a common tool used to increase reliability and performance in
both programming languages and databases. Programming languages use static
typing to check programs before they are run – to ensure that only valid oper-
ations are applied to data at runtime. Static typing can improve performance
because these checks can be omitted at runtime. It also aids in modular develop-
ment, since clients and servers can be written and checked against well-defined
interfaces. In a database, a query is typically checked for type errors before the
query is compiled.

Static typing is a different kind of criteria from mapping of data and interpre-
tation of null values. This is because static typing is not a property of data, but
is instead a property of the system that manages data and the way it interprets
programs or queries. Thus static typing is a meta-issue that applies to other
criteria. For example, data mapping may be performed at runtime or it may be
statically checked. In our evaluation, static typing is an additional dimension of
evaluation for other criteria, rather than being a single criteria itself.

5 Interface Styles

The solution space for integrating programming languages and databases can be
characterized by two extremes: orthogonal persistence and explicit query execu-
tion. The specific solutions examined in Section 9 all use some combination of
these two approaches. Orthogonal persistence is a pure approach to persistence
in which the mechanisms of persistence, or even the existence of an underly-
ing database, is largely hidden from programmers. Explicit query execution is a
pragmatic approach that allows existing languages to explicitly invoke database
operations.
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void printInfo(String prefix) {
for (Employee e in db.allEmployees() )

if ( e.name.startsWith(prefix) && e.salary > e.manager.salary ) {
print( e.name );

print( e.salary );

print( e.department.name );

} }

Fig. 2. Printing employee information

5.1 Orthogonal Persistence (S1)

Orthogonal persistence is a natural extension of the traditional concept of vari-
able lifetime to allow objects or values to persist beyond a single program ex-
ecution [6]. In the most pure form, persistent values exist as long as they are
referenced (transitively) by a persistent root, although explicit operations such
as deletion have been explored. Persistence is orthogonal because the persistence
behavior of a value is independent of any other programming considerations, in-
cluding the type of the value or where it was created.

Programs that manipulate persistent data look the same as ordinary pro-
grams. Assuming that db is a persistent root that contains a collection of em-
ployees, Figure 2 finds employees whose last name begins with a prefix and whose
salary is greater than their manager’s salary. It then prints the employee’s name,
salary, and department name.

Examples of orthogonal persistence systems include PJama [7], Thor [31],
and OPJ [33]. Pure orthogonal persistence systems often implement their own
storage manager, rather than relying upon existing database technology.

Rather than view orthogonality as a binary property, it is more useful to
view it as a spectrum. In this view, it is a measure of the degree of uniformity
in the treatment of persistent and non-persistent data. This view is also rea-
sonable given that some operations, like those related to transactions, are only
meaningful for persistent data, so some degree of non-orthogonality is essential
[11].

Most Object-oriented databases (OODB) implement a degree of orthogonal
persistence, although the values that can be persistent are often restricted to
be objects. [16]. They are rarely purely orthogonal, since special operations for
querying are provided on persistent data. Object-relational mapping (O/R) tools
also provide a degree of orthogonal persistence. Examples include TopLink, JDO,
EJB, and Hibernate [20, 26, 37, 34].

5.2 Explicit Query Execution (S2)

The primary alternative, and historical predecessor, to orthogonal persistence
is the execution of queries written in a specialized query language. The main
advantage of explicit query execution is that it allows the programmer to directly
interact with the database engine.
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string empQuery = "SELECT e.name, e.salary, d.name as deptName"

+ " FROM (Employee e INNER JOIN Department d ON d.ID = e.department)"

+ " INNER JOIN Employee m ON m.ID = e.manager"

+ " WHERE e.name LIKE ? AND e.salary > m.salary"

Connection conn = DriverManager.getConnection(...);

PreparedStatement stmt = con.prepareStatement(empQuery);

stmt.setString(1, prefix + "%");

ResultSet rs = stmt.executeQuery(empQuery);

while ( rs.next() ) {
print( rs.getString("name") );

print( rs.getDecimal("salary") );

print( rs.getString("deptName") );

}

Fig. 3. Explicit query execution with JDBC

Embedded Queries Explicit queries may be embedded within the program-
ming language or handled by a preprocessor [27]. Examples include SQLJ [8].
Embedded SQL provides a statically-typed approach to explicit query execu-
tion. One significant drawback of embedding is that it does not support dynamic
queries, as discussed in Section 7. Another problem is that the change to the syn-
tax of a programming language typically break other tools, including refactoring
tools, IDEs, and CASE tools.

Call Level Interfaces The dominant mechanism for explicit query execution is
the call level interface (CLI) [28], which allows a programming language to access
a database engine through a standardized API [28, 24]. The key characteristic
of a CLI is the ability to execute database queries and commands, which are
represented as strings or other runtime data structures [26]. Figure 3 illustrates
how the SQL query in Figure 2 can be performed using JDBC [24].

Most orthogonal persistence systems do not support explicit queries. Some,
but not all, object-oriented databases support explicit queries. Most object-
relational mapping (O/R) tools support explicit queries in addition to orthogonal
persistence. Sometimes explicit queries are added to address performance prob-
lems; for example, EJB 1.0 did not include queries, but EJB 2.0 does. Other
systems, including TopLink, JDO, and Hibernate have sophisticated query lan-
guages. Instead of strings, queries may also be represented by runtime data
structures. Hibernate allows queries to be represented as criteria objects. In
these systems the field names are still represented as strings.

Call level interfaces have a number of significant problems. The syntax and
types of database programs are not checked statically, so any errors are not
detected until runtime. Constructing and reusing queries at runtime requires
complex and error-prone string manipulation. Query results are represented as
dynamically typed objects that are accessed by string names. It is possible to
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type-check embedded queries in some situations. Gould, Su and Devanbu [23] ap-
ply static analysis to check programs that use call level interfaces. Their analysis
does not currently cover query parameters or result types and can produce in-
correct results when components are compiled separately. Its primary advantage
is that it can apply to existing programs.

Despite these problems, many commercial software development projects use
call level interfaces to leverage database query optimizers and reduce communi-
cation latency in order to improve overall system performance.

6 Optimization

Most data-intensive applications handle large amounts of data. Therefore, it is
important for the application to optimize data access. An appropriate query
strategy may often be orders of magnitude faster than a naive query strategy
[41].

The examples in this section present common database optimizations, but
from a programming language viewpoint. In order to provide a fine-grained anal-
ysis of existing solutions, we separate the concepts of search from navigation.
These correspond roughly to the WHERE and SELECT clauses of SQL: search
is concerned with selecting a subset of objects of interest, while navigation is
used to process the output of the search. This distinction is important because
many solutions support one but not the other.

6.1 Optimizing Search

The first problem is optimization of search. The straightforward program given
in Figure 2 takes time proportional to the number of employees, yet only a few of
them may match the prefix. Traditional database optimization techniques can be
applied to improve this algorithm by using an index. This can effectively reduce
the running time to be proportional to the number of matching employees.

Explicit Indexes (P1) One common technique is to invert the order of sub-
operations like iteration and testing. Thus the query optimizer may use an index
to compute the set of identifiers for records that match a condition, then find
the corresponding data by looking up these identifiers in a second index. This
aspect of the plan is illustrated in Figure 4, which includes this optimization in
the original Java code.

The prefix test is implemented by searching an index: the match method
returns an iterator over the index matches. An efficient index from record IDs
to record values is then used to find the employee data. This code will be more
efficient than the linear search as long as most names do not start with the
prefix. Explicit programming against indexes is supported by Exodus [13] and
Ontos [40].

Programmer productivity is significantly reduced if such optimizations must
be coded by hand, because even a slight change to the original unoptimized
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void printInfo(String prefix) {
for (IndexItem l in employeeNameIndex.match("S")) {

Employee e = employeeID_Index.lookup(l.ID);

if (e.salary > managerID_Index.lookup(e.managerID).salary) {
print( e.name );

print( e.salary );

Department d = departmentID_Index.lookup(e.deptID);

print( d.name );

} } }

Fig. 4. Optimized printing of employee information

code, e.g. adding another condition to the if statement, may require a significant
rewrite of the optimized form.

Criteria Shipping (P2) Most databases manage indexes automatically and
perform query optimization based on detailed knowledge of the structure, con-
tent, and location of the data [21]. A database query optimizer will build a plan
based on the complete operation being performed. Query optimization takes into
account the details of the operation being performed and the current context in
which it will be executed. Context includes statistical properties of the actual
data being stored, the amount of memory available, the load on the processor, the
frequency of different kinds of queries, etc. These kinds of optimizations require
specialized knowledge of the data and its relationships – but this information is
typically not available to compilers for general purpose languages.

Explicit query execution is a pragmatic approach to search optimization:
it reduces the number of round-trips to the database and also gives the query
optimizer more scope for optimization. Of course, it requires programmers to
manually create appropriate queries.

It is also possible to define programming constructs that allow search criteria
to be defined using standard boolean expression syntax but executed as a query
against the database. The Linq extension to C# uses this technique to collect
queries to be sent to the database [18, 10]. A new iteration construct, similar to
a SQL select statement, is added to indicate which criteria that can be remotely
executed.

The standard iteration constructs in AppleScript allow search criteria to be
specified relative to the object model of a remote application [2]. The resulting
search criteria are passed to the remote application for efficient execution.

Existing syntax can also be used to express queries. Safe Query Objects use
an ordinary boolean method to define a query [17]. Rather than executing as
standard byte-code, the queries are converted to database queries and appropri-
ate wrapper code to call a database CLI. Because the queries are type-checked
before conversion, the CLI calls will not cause type errors.
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6.2 Optimizing Navigation

In addition to optimizing the search for objects, it is also important to optimize
navigation to related objects. The problem is that there is typically significant
latency in loading objects from the persistent store.

Prefetching Related Objects (P3) The original code in Figure 2 traverses
the department relationship to print the name of each employee’s department.
In a persistent object system this traversal will load the appropriate depart-
ment object, if it has not been already loaded. When persistence is connected
to a relational database, each department may be loaded with a separate query,
significantly reducing performance.

Most existing object persistence runtimes do not optimize navigation, al-
though techniques for improving performance using prefetching have been ex-
plored [9]. This issue, and its interaction with modularity, will be discussed again
in Section 7.

Call-level interfaces require the programmer to specify the data produced by
the query, therefore, the programmer is responsible for navigation optimization.
Object-relational mapping tools support limited navigation optimization. EJB
and JDO can specify automatic loading of related objects, but this is currently a
global property, not specific to a query. Toplink and Hibernate 3 have more flex-
ible support for navigation optimization, but adding appropriate loading hints is
cumbersome, and the mechanisms are not fully general. For example, TopLink
only supports loading one level of multi-valued sub-attributes. Optimization of
navigation should be a goal for any solution to impedance mismatch.

Multilevel Iteration (P4) A particularly difficult case of navigation is mul-
tiple levels of interaction through multi-valued relationships. This pattern is
awkward to express in current SQL. One example is multi-level iteration, in
which several levels of multi-valued relationships are included in the results of a
query. Figure 5 illustrates this pattern. Even if collections of related items are
loaded in one query, a query is needed to load the employees of each department,
and the projects of each employee. If there are n departments in Austin and on
average m employees per department in Austin, 1 + n + nm queries would be
executed.

It is possible to load the required data in three queries: one to load depart-
ments in Austin, one to load employees whose department is in Austin, and one
to load projects of employees who work in departments in Austin. The condition
at the top of the loop must be replicated in each of the queries. The sorting
orders must also be carefully nested if all the results are to be returned in the
right order. Finally, the client must associate items in one table with correspond-
ing subsets in nested tables. Note that a single query is also possible, although
department and employee names must be replicated.

This common idiom cannot be expressed in SQL, although it is possible in
OQL. In revising SQL, more attention should be placed on the kinds of queries
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for each Department d in DB.getDepartments() sorted by size

if d.city = ’Austin’ then

print( d.name );

for each Employee e in d.employees sorted by e.name

print( e.name );

for each Project p in e.projects sorted by p.date

print( p.name );

Fig. 5. Pseudo-code for multi-level iteration

that are needed to support object-relational mapping [42]. Taking the develop-
ment of RISC processors as an analogy, SQL can be viewed as a form of assembly
language: rather than design a clean, human-readable interface, it is more effec-
tive to measure the common patterns generated by client programs to design
an optimized interface. There has been some research into detecting multi-level
iteration and improving its performance using prefetching[25], however, no com-
mercial system has implemented this type of prefetching.

6.3 Bulk Data Manipulation (P5)

While searches inherently involve many objects, updates are frequently per-
formed only a few at a time, leaving little room for the kinds of optimizations
described in the previous sections. However, there are typically a few cases in
any application where bulk data manipulation is required. Data manipulation
operations include inserts, deletes, and updates to data. A simplified example is
the following:

for (Employee e in db.allEmployees() )

if ( e.department.name.equals("Sales") )

e.salary = e.salary * 1.2;

The optimizations described in the previous section also apply in this case.
It is easy to use explicit query execution to run a custom SQL statement to
perform a bulk operation.

UPDATE Employee set salary = salary * 1.2 from Employee

INNER JOIN Department d ON d.ID = e.Department

WHERE d.name = ’Sales’

But neither object-relational mapping tools or Java-based persistent pro-
gramming languages allow bulk update operations to be efficiently executed
in relational databases. AppleScript allowed update operations to be executed
remotely. The DBPL language [38] and it successor Tycoon [35] explored op-
timization of search and bulk operations within the framework of orthogonal
persistence. Tycoon proposed integrating compiler optimization and database
query optimization, but no final results were published [22]. Queries that cross
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modular boundaries were optimized at runtime by dynamic compilation [39].
No performance evaluations have been published for DBPL or Tycoon; the only
published metrics cover lines of code in the implementation.

Caching Caching strategies are independent of the design of the interface be-
tween the language and the database, at least as far as the programmer using
the interface is concerned. The implementor of data access infrastructure and
databases must clearly pay attention. However, our focus here is on design issues
that affect the user of data access infrastructure, not implementors.

7 Reuse

The previous section discussed issues of local optimization. In addition, there
are issues relating to composition, or decomposition, of operations.

Parameterized Queries (R1) Parameterized and dynamic queries arise when
queries are extracted from a program for remote execution in a database. For ex-
ample, the prefix becomes a query parameter when moving from the orthogonally
persistent code in Figure 2 to the explicit execution of a SQL query in Figure 3.
With explicit query execution, query parameters are awkward to specify, and
the types of parameters are not checked until runtime.

Dynamic Queries (R2) Dynamic queries are query strings that are con-
structed at runtime. Although dynamic queries would seem to be a terrible idea,
they are quite common and must not be dismissed out of hand. Dynamic queries
can be handled by partial evaluation of a query relative to values that affect the
query but do not depend upon the database [17]. For example, if a search form
in a user interface allows a set of optional search criteria to be specified, the
resulting query can be partially evaluated relative to the choice of which criteria
to include. A detailed explanation is given in [17]. Dynamic queries also arise
in implementing fine-grained authorization rules that apply individually to each
user [36]. We conjecture that lack of support for dynamic queries is the primary
reason for abandonment of most forms of embedded SQL [27].

Dynamic queries are also needed to create ad-hoc joins in reporting appli-
cations supporting online analytical processing (OLAP). These applications are
outside the focus of the work presented here.

Modular Queries (R3) Since most general-purpose programming languages
have support for modular decomposition – using functional and data abstraction
– the corresponding persistent languages have the same capabilities. It is well-
known that modularity can interfere with optimization, but the problem may be
worse in relation to database access. Both search and navigation optimization
depend upon knowing all the conditions and data involved in access to persistent
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data. Query optimization works best when large units of work are sent to the
database, rather than individual operations. This both reduces the number of
round-trips, and also gives the query optimizer more scope for optimization.

It is worth noting that while relational algebra supports modular composi-
tion, because every query is a relation, in practice it can be quite difficult to
combine the effect of two SQL queries at a syntactic level. A solution to integra-
tion of languages and databases should support modularity, composition, and
reuse of data-intensive program structures.

8 Concurrency

Concurrency in databases has a different focus from the kind of concurrency sup-
ported in typical programming languages [3]. Programming languages typically
use threads and synchronization to define concurrent processes that cooperate to
achieve an overall goal while periodically communicating, or requesting shared
resources.

In a database, concurrency is viewed as competitive: multiple transactions
compete for access to shared resources. Individual operations may be interleaved,
as long as the overall transactions are serializable. At any point the transaction
manager can abort and roll back a transaction. Databases provide guarantees
on the overall behavior of the system, programming languages typically do not.

Concurrency causes significant problems for the pure form of orthogonal per-
sistence [11]. Rather than insist on complete orthogonality, research should focus
on providing semantically meaningful transaction/recovery behavior [19] within
programming languages.

Search optimization also benefits transactions: if an operation touches many
objects but updates only one, the touched objects create a large “footprint” that
can interfere with other transactions. Search optimization reduces the number
of objects touched in a transaction. Long-running transactions are more likely
to block other transactions or be aborted.

9 Evaluation

Figure 6 summarizes the results of qualitative evaluation of different existing so-
lutions to impedance mismatch. The evaluations in the optimization and main-
tenance sections each have two grades: The first grade is support for the feature.
The second grade specifies whether static typing applies to the feature. For sys-
tems that were not designed to work with relational databases, a mapping to a
relational database is certainly possible.

PJama and OPJ are pure orthogonally persistent variants of Java [30]. These
systems don’t support true concurrent database transactions, but do have a
notion of “checkpointing” a globally consistent state of a store [11]. Although
the goal of pure orthogonal persistence prevents the use of explicit queries, it is an
open question whether a Java compiler could use criteria shipping or navigation
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ObjStore
Exodus O2

PJama Ontos JDO 1.0 Hibernate ODBC SQLJ
OPJ EJB 1.0 EJB 2.0 TopLink JDBC S/NQ Linq

Types

T1. Mapping
√ √ √ √ × × √ √

T2. Nulls
√ √ √ √ √ √ √ √

Interface

S1. Orthog. persistence
√

* * * × × * ×
S2. Explicit query exec. × × √ √ √ √ √ √
Optimization

P1. Explicit indexes × –
√ × – – – – – –

P2. Criteria shipping × – × –
√ × √ × √ × √ √ √ √ √ √

P3. Navigation prefetch × – × – *
√ √

*
√ × √ √ × – * *

P4. Multilevel iteration × – × – × – * × × – × – × – *
√

P5. Bulk data manip. × – × – × – × –
√ × √ √ × – × –

Reuse for explicit queries

R1. Query parameters – –
√ × √ × √ × √ √ √ √ √ √

R2. Dynamic queries – –
√ × √ × √ × × –

√ √ √ √
R3. Modular queries – –

√ × √ × √ × × –
√ √ √ √

Concurrency

C1. Transactions × √ √ √ √ √ √ √
√√

= Feature supported and statically typed√× = Feature supported but not statically typed
× – = Feature not supported√

= Feature supported
* = Partially supported
× = Not supported
– = Not applicable

Fig. 6. Summary of qualitative evaluation of solutions to impedance mismatch

prefetch as part of its compilation strategy. It should also be possible to include
a true model of concurrent ACID transactions within these systems, although
this would reduce the degree of orthogonality for persistent data.

Exodus [13] and Ontos [40] are object-oriented databases with their own
storage manager. Programmers can use explicit indexes to optimize search. In
Exodus the index key is statically typed, but the data objects loaded from the
index are not. EJB 1.0 is an object-relational mapper that resembles an object-
database interface. EJB 1.0 did not support explicit queries, but allowed finder
methods, which are a form of explicit index.

ObjectStore and O2 are object-oriented databases with their own storage
manager [40]. They support criteria shipping through the use of criteria objects.
But these are not statically checked, and fields are named by strings.

JDO 1.0 and EJB 2.0 are object-relational mapping tools for Java. They pro-
vide a high degree of orthogonal persistence [29]. Criteria shipping is supported.
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Navigation optimization is partially supported: it can be specified as a global
property of a relationship, but not on individual queries.

Hibernate and TopLink are object-relational mapping for Java a degree of or-
thogonal persistence. Each has a specialized language for criteria shipping. These
query languages support criteria shipping and navigation prefetch, although the
prefetch specifications are not fully general. They also provide partial solutions
to multilevel iteration.

ODBC and JDBC are standard call level interfaces. They provide full func-
tionality but no static typing. Optimization of multilevel iteration is difficult
using these interfaces. SQLJ [8] is a form of embedded SQL for Java. It provides
a high degree of static typing, but does not support dynamic or modular queries.

Safe/Native Queries (S/NQ) [17] and Linq [18] are two recent proposals.
Safe Queries build on top of an object-relational mapping tool, like JDO or
Hibernate, but provide static typing of queries, which are represented as standard
Java classes. Linq is an extension to C# to define statically typed queries over
relational or other data sources. Unlike embedded SQL, these approaches support
dynamic queries. Linq supports a form of multi-level iteration; since it uses a
single join to return all the data, the values from enclosing iterations are repeated
for each item returned for a nested iteration. It also allows a form of prefetch,
although the objects returned are records, not instances of mapped classes. Note
that the evaluation of Linq is still preliminary.

10 Conclusions

A complete solution to the problem of impedance mismatch must provide both
a clean programming model and high performance. While issues of mapping
data between databases and programming languages have largely been resolved,
significant issues remain. The interface should leverage the best capabilities of
both databases and programming languages to for optimization, static typing,
and modular development. Each of these aspects has a solution by itself. The
problem of impedance mismatch is meeting all the goals simultaneously. In this
paper we have proposed qualitative criteria for evaluating proposed solutions,
and evaluated a range of existing solutions against these criteria.
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