
97

This chapter is from the new book Patterns of Data Modeling by Michael Bla-
ha, CRC Press, 2010. All rights reserved. This chapter is posted on odbms.org
with the permission of the author and publisher. This is the second of three
chapters that will be posted over the upcoming months.

8

Universal Antipatterns

An antipattern is a characterization of a common software flaw. When you find an antipat-
tern, substitute the correction. Universal antipatterns are antipatterns that you should avoid
for all applications.

8.1 Symmetric Relationship Antipattern

8.1.1 Observation
An entity type has a self relationship with the same multiplicity and role names on each end.
Typically this is a many-to-many self relationship. Symmetric relationships can be trouble-
some for programming and are always troublesome for relational databases.

8.1.2 Exceptions
There are no exceptions for relational database designs. Avoid symmetric relationships.

8.1.3 Resolution
Promote the relationship to an entity type in its own right. The improved model not only re-
solves the symmetry but is often more expressive.

8.1.4 Examples
Consider Figure 8.1a and Figure 8.2a. RelatedContract involves two contracts but the sym-
metry is troublesome. If each pairing is entered once, it is not clear which contract should be
first and which is second. If each pairing is entered twice, the amount of storage increases
and any change requires double update. If more than two contracts are related, the situation
is messier yet (for three contracts that are double stored: C1-C2, C2-C1, C1-C3, C3-C1, C2-

98 Chapter 8 / Universal Antipatterns

 Michael Blaha and CRC Press

C3, C3-C2). Furthermore, the antipattern does not require that the related contracts be dif-
ferent. None of this is desirable.

The improved model (Figure 8.1b and Figure 8.2b) breaks the symmetry. To find related
contracts traverse as follows: start with a Contract, find the possible ContractRelationship,
then traverse back to Contract (excluding the initial contract) to obtain the related Contracts.
Figure 8.3 shows the corresponding SQL Server code; the code is efficient if the join fields
are indexed. (The SQL code presumes existence-based identity; see Chapter 16.)

The revised model has further advantages. The coupling is no longer binary and can
readily support three or more related contracts. The model could be extended to make Con-
tract to ContractRelationship many-to-many with different relationship types. For example,
one relationship type could be successor contracts (one contract replacing another). A sec-
ond relationship type could be alternative contracts (several contracts being considered as al-
ternatives for purchase).

For another example, consider the words in a dictionary (Figure 8.4). An inferior model
relates word meanings directly. Also the inferior model cannot handle a group of inter-
changeable words. Looking in the Framemaker 8 online thesaurus, the first definition of “ac-
count” has four synonyms (chronicle, history, annals, and report). The SynonymSet supports
a group of word meanings.

ContractRelationship

(a) Antipattern example

RelatedContract

* *

(b) Improved model

*

Figure 8.1 Symmetric relationship: UML contract model. Promote
symmetric relationships to an entity type.

0..1

Contract

contractNumber {unique}

Contract

contractNumber {unique}

Figure 8.2 Symmetric relationship: IDEF1X contract model.

contractID

Contract

(a) Antipattern example (b) Improved model

RelatedContract

contractID1 (FK)
contractID2 (FK)

contractID

Contract

contractRelationshipID

ContractRelationship

contractNumber (AK1.1)contractNumber (AK1.1)
contractRelationshipID (FK)

8.2 Dead Elements Antipattern 99

 Michael Blaha and CRC Press

8.2 Dead Elements Antipattern

8.2.1 Observation
A model has obsolete elements (entity types, relationships, attributes). They may have been
relevant in the past but are extraneous now.

8.2.2 Exceptions
It is acceptable for a model to have small amounts (no more than a few percent of the total)
of dead elements. Large amounts of junk cause confusion and complicate maintenance.

8.2.3 Resolution
Either cut the dead elements from the model or place them in isolation. For example, some
commercial products have a special documentation section for deprecated database tables
that will be removed in future releases.

Figure 8.3 Symmetric relationship: Sample SQL traversal code. The
code is efficient if the join fields are indexed.

SELECT C2.contractNumber
FROM Contract AS C1

INNER JOIN ContractRelationship AS CR
ON C1.contractRelationshipID =

CR.contractRelationshipID
INNER JOIN Contract AS C2

ON CR.contractRelationshipID =
C2.contractRelationshipID

WHERE C1.contractNumber = :aContractNumber AND
C2.contractID <> C1.contractID

ORDER BY C2.contractNumber;

WordMeaning

(a) Antipattern example

Synonym

* *
WordMeaning

(b) Improved model

*

SynonymSet

0..1

Figure 8.4 Symmetric relationship: UML synonym model. The im-
proved model is more expressive.

Word Word
*1 *1

100 Chapter 8 / Universal Antipatterns

 Michael Blaha and CRC Press

8.2.4 Examples
Some databases have relic tables from past releases. It is acceptable to keep deprecated tables
for a while, but eventually they should be removed. You should be suspicious of tables with
zero records.

8.3 Disguised Fields Antipattern

8.3.1 Observation
The name and documentation for a field do not indicate the kind of data that is stored.

8.3.2 Exceptions
A few user-defined fields as well as miscellaneous comments are acceptable as an extensi-
bility mechanism. Otherwise disguised fields are seldom justified.

8.3.3 Resolution
A relational database is supposed to be declarative. A field name should be informative and
describe the data that is stored.

8.3.4 Examples
Disguised fields can arise in several ways.

• User defined fields. Many vendor packages have user-defined fields—anonymous
fields for miscellaneous data. Vendors cannot anticipate all customer needs and user-
defined fields provide flexibility.

• Mislabeled fields. Software is constructed with an original purpose that meets business
needs. With subsequent releases, developers may store different data without updating
the schema. With user-defined fields, data lacks a description of its meaning. Mislabeled
fields are worse, as the description is misleading.

• Binary fields. Some databases have binary fields whose interpretation is left to pro-
gramming code. For example, the MS-Access system catalog has binary fields, such as
the Lv, LvExtra, and LvProp fields in MSysObjects. These are rarely a good idea.

• Anonymous fields. Figure 8.5 shows an excerpt from a legacy application with anony-
mous address fields. Figure 8.6 shows some corresponding data. To find a city, you
must search multiple fields. Worse yet, it could be difficult to distinguish the city of Chi-
cago from Chicago street. You may need to parse a field to separate city, state, and post-
al code. It would be much better to put address information in distinct fields that are
clearly named.

• Overloaded fields. A column of a table can store alternative kinds of values. Sometimes
the kind of value is indicated by a switch in another column. Other times the values are
distinguished by their format or contextual knowledge buried in programming code.

8.4 Artificial Hardcoded Levels Antipattern 101

 Michael Blaha and CRC Press

8.4 Artificial Hardcoded Levels Antipattern

8.4.1 Observation
Chapter 2 presented hardcoded trees with a different entity type for each level. Such an ap-
proach can be justified for models where the structure does not vary and it is important to
enforce the sequence of types.

The antipattern also involves a fixed hierarchy but one with little difference between the
entity types. Such a model is brittle, permits duplicate and contradictory data, and is difficult
to maintain and extend.

8.4.2 Exceptions
Sometimes the hardcoding of artificial levels is desirable for its simplicity. For example, I
needed to convert bill-of-material formats for a past project. The source was a hierarchical

Figure 8.5 Disguised fields: Sample SQL code. Creating a table with
anonymous address fields.

CREATE TABLE Location
(location_num DECIMAL(3)
,location_name VARCHAR(15)
,location_address_1 VARCHAR(30)
,location_address_2 VARCHAR(30)
,location_address_3 VARCHAR(30)
,location_address_4 VARCHAR(30)
,location_address_5 VARCHAR(30)
,location_group_code DECIMAL(2)
,location_business_type VARCHAR(1)
,location_tot_bus_sales_dol DECIMAL(11,2)
,location_gross_profit_dol DECIMAL(11,2)
,CONSTRAINT PK_Location PRIMARY KEY (location_num)) ;

Figure 8.6 Disguised fields: Sample data. Anonymous address fields.

location_address_1 location_address_2 location_address_3

456 Chicago Street Decatur, IL xxxxx
198 Broadway Dr. Suite 201 Chicago, IL xxxxx

123 Main Street Cairo, IL xxxxx
Chicago, IL xxxxx

102 Chapter 8 / Universal Antipatterns

 Michael Blaha and CRC Press

indented list and the target was parent–child pairings. One program generated the hierarchy
as output and another required the pairings as input. I did not want to program the recursive
descent of a tree. Instead I hardcoded a fixed number of levels and quickly wrote a SQL que-
ry. Hardcoded levels can be acceptable for a prototype or throwaway code.

8.4.3 Resolution
Abstract and consolidate the levels. Use one of the tree patterns to relate the levels.

8.4.4 Example
Figure 8.7a shows a three-level hierarchy from a legacy application where an individual con-
tributor has a supervisor who in turn has a manager. The limitation to three levels is arbitrary.
Many questions come to mind. How should the software deal with an individual contributor
who becomes a supervisor and then becomes a manager? Should there be three different re-
cords? Does the user multiply enter data, such as names, phone numbers, and addresses
(omitted in the example)?

The improved model (Figure 8.7b) is simpler, more expressive, and avoids these issues.
There can be an arbitrary number of management levels. An employee reports to a boss who
is also an employee. The boss reports to his or her boss continuing up the reporting hierarchy.
The field employeeType is an enumeration with the values of “Manager,” “Supervisor,” and
“IndividualContributor.” A boss can manage many subordinates and a subordinate has at
most one boss. The highest ranking employee in the database has no boss. The ‘/’ prefix is
UML notation for derived data (see the Appendix for further explanation).

Supervisor

Manager

1

*

IndividualContributor

1

*

*
0..1
boss

subordinate

Employee

employeeType
/ reportingLevel

(a) Antipattern example (b) Improved model

Figure 8.7 Artificial hardcoded levels: UML management hierarchy
model. Abstract and consolidate the levels.

8.5 Excessive Generalization Antipattern 103

 Michael Blaha and CRC Press

8.5 Excessive Generalization Antipattern

8.5.1 Observation
A model has a deep generalization. In many cases extensive taxonomies are motivated by
object-oriented programming and are inadvisable.

8.5.2 Exceptions
If there is a formal standard for a taxonomy (such as for biological organisms) you should
use it. Otherwise I cannot think of a justification. Normally, it is best to avoid deep general-
ization.

As an example, [Americazoo] presents a taxonomy for mammals, including Figure 8.8
for wolves. Each indentation is a lower level in the taxonomy. Figure 8.8 corresponds to a
generalization that is seven levels deep.

8.5.3 Resolution
As a guideline a database taxonomy should be no more than four levels deep. (A program-
ming taxonomy should be no more than five levels deep.)

8.5.4 Examples
Many years ago at GE Global Research, we built a software modeling tool, called OMTool.
The tool was based on a metamodel with a taxonomy that was seven levels deep. Even
though the taxonomy was sound, we found it difficult to remember all the levels complicat-
ing development. In retrospect we regretted using such a deep taxonomy.

On another project we prepared a large equipment taxonomy (50 pages long!). [Blaha-
2003] We understood the problem well and had access to domain experts. Nevertheless, we
had trouble with modeling. The taxonomy was so extensive that it was difficult to determine
where to place equipment. Also the various types of equipment had many fields and we kept
discovering additional data. For this project, it would have been better to forego a hardcoded
taxonomy and instead use a softcoding approach. [Blaha-2006]

Section 10.2 shows a sound taxonomy that is three levels deep.

Class: Mammalia
Subclass: Theria

Infraclass: Eutheria
Order: Carnivora

Family: Canidae
Genus: Canis

Species: lupus

Figure 8.8 Excessive generalization: Taxonomy for wolves. Normally it is
best to avoid deep generalization; formal standards are an exception.

104 Chapter 8 / Universal Antipatterns

 Michael Blaha and CRC Press

8.6 Disconnected Entity Types Antipattern

8.6.1 Observation
A model has a number of free-standing entity types. From the problem understanding, it
would seem that they should be related.

8.6.2 Exceptions
Some disconnected entity types can be acceptable (as a guideline, no more than 10% of the
entity types). But it is suspicious when a model has many of them.

8.6.3 Resolution
Recognize that the model is likely to be incomplete. Determine the missing relationships and
add them.

8.6.4 Example
Many Eclipse (www.eclipse.org) applications generate XML files for storing persistent data.
An application may also have a database that developers populate apart from Eclipse. If you
reverse engineer the database, the resulting model can appear to be incomplete. Ideally the
database should store both the added data and the Eclipse data.

8.7 Modeling Errors Antipattern

8.7.1 Observations
A model has one or more serious conceptual flaws. Modeling errors lead to bugs in the fin-
ished software, complicate development and maintenance, and can impair performance.

8.7.2 Exceptions
Errors in models become errors in the finished software. Errors are never acceptable, but
sometimes you have to live with them, such as with legacy systems and vendor software.

8.7.3 Resolution
Understand the flaw and how it may have come about. If possible, correct the model.

8.7.4 Examples
Over the years I have reverse engineered several modeling tools and inspected their internal
metamodels. One would expect tool developers to have excellent models, but that is not al-
ways the case. Some data modeling tools have the deep flaw of directed relationships.

As Figure 8.9 shows, a directed relationship has “from” and “to” entity types. Using
such a tool to construct Figure 8.1b, Contract would be “from” and ContractRelationship

8.8 Multiple Inheritance Antipattern 105

 Michael Blaha and CRC Press

would be “to” or vice versa. This is nonsense. The model simply states that Contract and
ContractRelationship are related. An improved model (Figure 8.9b) introduces the notion of
a role which is the intersection of an entity type and a relationship. As a side benefit, the im-
proved model can support ternary relationships.

For another example, I reverse engineered a vendor product for a library catalog system
and found that the database implemented a linked list. There is no such thing as a “linked
list” in a conceptual model of a library. Someone did not abstract properly and misguidedly
put implementation concepts in a conceptual model.

8.8 Multiple Inheritance Antipattern

8.8.1 Observation
A model has multiple inheritance. Multiple inheritance is a generalization for which an en-
tity type inherits information from multiple supertypes.

8.8.2 Exceptions
Multiple inheritance is not appropriate for data models. It can be acceptable as a mechanism
for programming reuse and for other kinds of models.

8.8.3 Resolutions
Avoid multiple inheritance in data models. Degrade the model if necessary. There is no clean
way to implement multiple inheritance with a database. In practice I have found that multiple
inheritance seldom occurs with databases and is not worth the bother.

8.8.4 Example
In Figure 8.10a and Figure 8.11a FullTimeUnionEmployee is both FullTimeEmployee and
UnionEmployee. The model does not show it, but an extended model could define three ad-
ditional combinations: FullTimeNonUnionEmployee, PartTimeUnionEmployee, and PartTi-
meNonUnionEmployee. Figure 8.10b and Figure 8.11b use a workaround (others are
possible) to eliminate the multiple inheritance.

Figure 8.9 Modeling error: UML relationship model. Repair modeling errors.

EntityType Relationship

fromEntityType

toEntityType

EntityType

Relationship

Role

(a) Antipattern example (b) Improved model

*
*1

1
*

*

1

1

106 Chapter 8 / Universal Antipatterns

 Michael Blaha and CRC Press

8.9 Paradigm Degradation Antipattern

8.9.1 Observation
A relational database is degraded to fit some other paradigm.

8.9.2 Exceptions
Such a technique is highly questionable.

8.9.3 Resolution
Rework the model and architecture to avoid such degradation.

8.9.4 Examples
Many years ago, I was reverse engineering the database of a commercial product and was
perplexed. The resulting model had many disconnected entity types with only a smattering
of relationships. I could not understand how so much information could be missing and sus-
pected that many relationships were disguised. I decided to cross check the schema with the

employmentStatus unionStatus

Figure 8.10 Multiple inheritance: UML employee model. Avoid multi-
ple inheritance in conceptual data models.

UnionPartTimeFullTime

FullTimeUnionEmployee

Employee Employee Employee

Employee

(a) Antipattern example

unionStatusemploymentStatus

EmployeeUnionDataEmployee
1 1

(b) Improved model
(workaround)

FullTime
Employee

PartTime
Employee

Union
Employee

Nonunion
Employee

Nonunion
Employee

8.9 Paradigm Degradation Antipattern 107

 Michael Blaha and CRC Press

hierarchical screen layout and discovered the missing relationships. The software vendor
confirmed my understanding.

The product supported a fixed hierarchy of depth three. Apparently the vendor created
the original product with a proprietary hierarchical database. Then the vendor migrated to
client-server technology and devised an isomorphic hierarchical database using a relational
database for the server. Figure 8.12 shows the structure for level 1, 2, and 3 tables. The point-
er fields are hidden parent pointers.

unionEmpID (FK)

employmentStatus

FullTimeEmployee

fullTimeEmpID (FK)

PartTimeEmployee

partTimeEmpID (FK)

Figure 8.11 Multiple inheritance: IDEF1X employee model.

unionStatus

UnionEmployee NonunionEmployee

nonunionEmpID (FK)

employeeID

Employee

employmentStatus
unionStatus

(b) Improved model (workaround)

(a) Antipattern example

unionEmpID (FK)

employmentStatus

FullTimeEmployee

fullTimeEmpID (FK)

PartTimeEmployee

partTimeEmpID (FK)

unionStatus

UnionEmployee NonunionEmployee

nonunionEmpID (FK)

employeeID

Employee

employmentStatus

employeeUnionDataID

EmployeeUnionData

unionStatus
employeeID (FK) (AK1.1)

FullTimeUnionEmployee

fullTimeEmpID (FK)
nonunionEmpID (FK)

108 Chapter 8 / Universal Antipatterns

 Michael Blaha and CRC Press

Figure 8.13 shows a table from another application. I am not sure what the attributes
mean. My best guess is that this table was being used for populating a spreadsheet.

Figure 8.12 Paradigm degradation: Fixed three-level hierarchy.

Level 3 table

internid
changedate
changetime
pointer1
pointer2
.....

Level 2 table

internid
changedate
changetime
pointer1
.....

Level 1 table

internid
changedate
changetime
.....

Antipattern example

Figure 8.13 Paradigm degradation: Spreadsheet as a giant table.
Avoid distortions of a relational database.

.....

.....
d100
d200
d300
d400
d500
d600
d705
d710
d720
d725
d740
d750
d775
d790
.....
h200
h300
h400
h705
h710
h720
h725
h740
h750
h790
.....

Antipattern example

8.10 Chapter Summary 109

 Michael Blaha and CRC Press

8.10 Chapter Summary
An antipattern is a characterization of a common software flaw. As you construct models,
you should be alert for antipatterns and correct them. Table 8.1 summarizes universal anti-
patterns—antipatterns to always avoid—along with their exceptions and resolution.

Bibliographic Notes
[Brown-1998] discusses antipatterns for programming, architecture, and management. The
book is informative, but the authors oversell the technology—antipatterns are not a panacea

Antipattern
name Observation Exceptions Resolution Frequency

Symmetric
relationship

A self relation-
ship has the same
multiplicity and
roles on each end.

None Promote the rela-
tionship to an
entity type.

Common

Dead
elements

A model has
unused elements.

Acceptable in
small amounts.

Delete them or
isolate them.

Common

Disguised
fields

Field names do
not describe data.

A few user-
defined fields.

Use meaningful
names.

Common

Artificial
hardcoded
levels

There is a fixed
hierarchy of simi-
lar entity types.

Use only with
great caution.

Consolidate the
levels and use a
tree pattern.

Occasional

Excessive
generalization

There is a deep
generalization.

None A db taxonomy
should be at most
four levels deep.

Occasional

Disconnected
entity types

A model has free-
standing entity
types.

A few can be
acceptable.

Add the missing
relationships.

Occasional

Modeling
errors

There is a serious
conceptual flaw.

None Fix the model. Occasional

Multiple
inheritance

A model has mul-
tiple inheritance.

Avoid for data
models.

Use a work-
around.

Seldom

Paradigm
degradation

A relational db is
degraded to some
other paradigm.

Highly question-
able.

Rework the
model and archi-
tecture.

Seldom

Table 8.1 Summary of Universal Antipatterns

110 Chapter 8 / Universal Antipatterns

 Michael Blaha and CRC Press

for the difficulties of software development. As [Brooks-1987] notes, there is no silver bullet
for improving software quality. [Laplante-2006] builds on [Brown-1998] and adds further
management antipatterns as well as cultural antipatterns.

Many of the examples in this chapter came from my experiences with database reverse
engineering — starting with existing database structures and inferring the underlying mod-
els. [Premerlani-1994] and [Blaha-1995] present unusual database designs that were found
during reverse engineering.

References
[Americazoo] http://www.americazoo.com/goto/index/mammals/classification.htm
[Blaha-1995] Michael Blaha and William Premerlani. Observed idiosyncrasies of relational database

designs. Second Working Conference on Reverse Engineering, July 1995, Toronto, Ontario, 116–
125.

[Blaha-2003] Michael Blaha. Data store models are different than data interchange models. Proceed-
ings of the International Workshop on Meta-Models and Schemas for Reverse Engineering (ateM
2003), November 2003, Victoria, BC.

[Blaha-2006] Michael Blaha. Designing and Implementing Softcoded Values. IEEE Computer Society
ReadyNote, 2006.

[Brown-1998] William J. Brown, Raphael C. Malveau, Hays W. “Skip” McCormick, and Thomas J.
Mowbray. AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis. New York:
John Wiley & Sons, Ltd, 1998.

[Brooks-1987] Frederick P. Brooks, Jr. No silver bullet: Essence and accidents of software engineer-
ing. IEEE Computer 20, 4 (April 1987), 10–19.

[Laplante-2006] Phillip A. Laplante and Colin J. Neill. Antipatterns: Identification, Refactoring, and
Management. Boca Raton, FL: Auerbach Publications, 2006.

[Premerlani-1994] William Premerlani and Michael Blaha. An approach for reverse engineering of re-
lational databases. Communications ACM 37, 5 (May 1994), 42–49.

