JDBC

Dr. Jim Arlow
Clear View Training Limited
www.clearviewtraining.com

© Clear View Training 2005 v1.3

i Copyright notice

This course is Copyright © 2000 Clear View Training Limited.
All rights reserved.

Materials in this course may not be reproduced electronically
or optically without express permission from the copyright
holder. For reprint permissions, contact
Jim.Arlow@clearviewtraining.com

© Clear View Training 2005 v1.3 2

i What is JDBC

= JDBC, often known as Java
Database Connectivity,
provides a Java API for
updating and querying

IDBC relational databases using

Structured Query Language

s JDBC Is now at version 2.0,

although many databases
RDBMS don’t as yet support all of
- - the JDBC 2.0 features!

© Clear View Training 2005 v1.3 3

Java Application
or Applet

i The 4 step approach to JDBC

= Every JDBC program is made up of the

following 4 steps:

Open a connection to the DB

Execute a SQL statement

Process the result

Close the connection to the DB

we’ll look at
each of the
four steps

In detail!

© Clear View Training 2005 v1.3 4

Example JDBC program

OOoO~NO O WNRE

import java.sql.%;

class SelectProducts

{

public static void main(java.lang.String[] args)

{

try
{

open connection to DB
execute SQL statement

process result

close connection to DB

Class.forName();
Connection con = DriverManager.getConnection(

);1

Statement statement = con.createStatement();
ResultSet rs = statement.executeQuery(

while (rs.next())
{
String name =rs.getString();
float price =rs.getFloat()
System.out.printin(+name+ +price);

}

statement.close();
con.close();

}

}

}

catch(Exception e) { e.printStackTrace(); }

© Clear View Training 2005 v1.3

i Opening a connection to the DB

= There are two parts to this:

= loading a driver — we need a driver to allow
our Java program to talk to the DB

= opening the connection itself

© Clear View Training 2005 v1.3 6

i Loading a driver

= The first step In using JDBC Is to load a driver.
Here are some examples:

The IBM DB2 driver:

Class.forName();

The SUN JDBC/ODBC Bridge driver:
Class.forName();

© Clear View Training 2005 v1.3 7

i There are 4 categories of driver

= Type 1 JDBC-ODBC Bridge (Native Code)

= provides a Java bridge to ODBC

= Implemented in native code and requires some non-Java software
on the client

= Type 2 Native-API (Partly Java)
= uses native code to access the DB with a thin Java wrapper
= can crash the JVM

= Type 3 Net-protocol (All Java)

= defines a generic network protocol that interfaces with some
middleware that accesses the DB

= Type 4 Native-protocol (All Java)
= written entirely in Java

© Clear View Training 2005 v1.3 8

i Type 1 JDBC-ODBC Bridge

Java application

Type 1 JDBC/ODBC

SQL command T result set
ODBC driver
proprietary
protocol

-

Provides a Java bridge to
ODBC

Implemented in native code
and requires some non-
Java software on the client

Not a mandatory
component of the JDK, and
IS not automatically
supported by Java run-time
environments

Only recommended for light
use

© Clear View Training 2005 v1.3 9

i Type 2 Native API

Java application

Type 2 JDBC driver

A

SQL command result set

Native database library

t proprietary

protocol

Converts JDBC commands
Into DBMS-specific native
calls

Implemented in native code
and requires some non-
Java software on the client

Interfaces directly with the
DB, so has performance
advantages over Type 1

© Clear View Training 2005 v1.3 10

i Type 3 JDBC-Net drivers

Java application = A three tier solution
= Allows pure Java clients
= Can change DBMS

Type 3 JDBC driver

SQL command | Uttt without affecting the
Middleware client
JDBC Driver
t proprietary
protocol most flexible

-

© Clear View Training 2005 v1.3 11

i Type 4 Native Protocol drivers

Java application

Type 4 Pure Java

SQL command result set
using using
proprietary proprietary
protocol protocol

© Clear View Training 2005 v1.3

Native Protocol drivers
communicate directly with
the DB

They convert JDBC
commands directly into the
DB’s native protocol

No additional transformation
or middleware layers,

therefore has high
performance

9

i Making a connection

s Next, the driver must connect to the DBMS:

Connection con = DriverManager.getConnection(

e

DB URL
login password
\— _/
~
optional

/

= The object con gives us an open database

connection

© Clear View Training 2005 v1.3

13

i Creating Statements

= A Statement object is used to send SQL
statements to the DB

= First we get a Statement object from
our DB connection con

10 Statement statement = con.createStatement();

© Clear View Training 2005 v1.3 14

i Example — creating a table

1 iImport java.sql.”;

2 class CreateProductTable

3 |

4 public static void main(java.lang.String[] args)

5 {

6 try

7 {

8 Class.forName("COM.ibm.db2.jdbc.app.DBEZ2Driver");

9 String url ="jdbc:db2: TEST";

10 Connection con = DriverManager.getConnection(url, “dbZadmin”, "db2Zadmin™);
11 Statement statement = con. createStatement()

12 String createProductTable = "CREATE TABLE PRODUCT +
13 "(NAME VARCHAR(64), "

14 "ID VARCHAR(32) NOT NULL, Y+
15 "PRICE FLOAT, " +

16 "DESC VARCHAR(256), " +

17 "PRIMARY KEY(ID))";

18 statement.executeUpdate(createProductTable);

19 } catch(Exception e) { e.printStackTrace(); }

20 }

21 }

© Clear View Training 2005 v1.3 15

i executeUpdate(String sql)

= Use the executeUpdate() method of the Statement
object to execute DDL and SQL commands that
update a table (INSERT, UPDATE, DELETE):

12 String createProductTable = +
13 +

14 +
15 +

16 +

17 :

18 statement.executeUpdate(createProductTable);

D Be careful to always put spaces in the SQL string at the right places! 7

© Clear View Training 2005 v1.3 16

i Example: inserting rows

OCOoO~NOUITE, WN B

20
21
22

import java.sql.”;
class InsertProducts
{
public static void main(java.lang.String[] args)
{
try

{
Class.forName("COM.ibm.db2.jdbc.app.DB2Driver™);

String url ="jdbc:db2: TEST";
Connection con = DriverManager.getConnection(url, "dbZadmin”, " db2admin "),
Statement statement = con.createStatement();
statement.executeUpdate("INSERT INTO PRODUCT " +
"VALUES ('UML User Guide', " +
"'0-201-57168-4', 47.99, 'The UML user guide')");
statement.executeUpdate("INSERT INTO PRODUCT " +
"VALUES ('Java Enterprise in a Nutshell', " +
"'1-56592-483-5', 29.95, 'A good introduction to J2EE")");
con.close();
statement.close();
}catch(Exception e) { e.printStackTrace(); }

}
}

© Clear View Training 2005 v1.3

17

i executeQuery(String sqgl)

= We use the executeQuery(...) method of the
Statement object to execute a SQL statement that
returns a single ResultSet:

11 ResultSet rs = statement.executeQuery();

= Typically, the SQL statement is a SQL SELECT

= executeQuery(...) always returns a ResultSet,
never null. However, the ResultSet may be empty

© Clear View Training 2005 v1.3 18

i Example: selecting rows

OCO~NOOITAWNPEF

import java.sql.”;
class SelectProducts
{
public static void main(java.lang.String[] args)
{
try

{
Class.forName("COM.ibm.db2. jdbc.app.DE2Driver”),

Connection con = DriverManager.getConnection("|dbc:db2: TEST", "db2admin™, " db2admin ");
Statement statement = con.createStatement();
ResultSet rs = statement.executeQuery("SELECT NAME, PRICE FROM PRODUCT");
while (rs.next())
{
String name =rs.getString("NAME");
float price =rs.getFloat("PRICE");
System.out.printin("Name: "+name+", price: "+price);
}
statement.close();
con.close();
} catch(Exception e) { e.printStackTrace(); }

}
}

© Clear View Training 2005 v1.3 19

i ResultSet

= ResultSet objects provide access to a table

= usually they provide access to the pseudo table that is the result of
a SQL query

= ResultSet objects maintain a cursor pointing to the current

row of data

= this cursor initially points before the first row and is moved to the
first row by the next() method

11 ResultSet rs = statement.executeQuery(

12 while (rs.next())

13 {

14 String name =rs.getString();

15 float price =rs.getFloat();

16 System.out.printin(+name+ +price);
17 }

© Clear View Training 2005 v1.3

20

JDBC
2.0

Statement statement = con.createStatement(type, concurrency);

i Types of ResultSet

= Depending on the parameters passed into the
Connection.createStatement(...) method, we can get
a total of 6 different types of ResultSet returned!

= Passing no arguments to createStatement() gives a
default forward-only read-only ResultSet

= We'll look at the possible values for type and
concurrency next...

© Clear View Training 2005 v1.3 21

JDBC

2.0
i type

type = semantics

ResultSet. TYPE_SCROLL_SENSITIVE | Scrollable. Reflects changes made to
the underlying data

ResultSet. TYPE_SCROLL_INSENSITIVE | Scrollable. Does noft reflect changes
made to the underlying data

ResultSet. TYPE_FORWARD_ONLY Not scrollable. Does rnot reflect
changes made to the underlying data

N.B. Scrollable means that we can navigate forwards and
backwards through the ResultSet

© Clear View Training 2005 v1.3 22

JDBC
2.0

i concurrency

concurrerncy = semantics

ResultSet. CONCUR_READ_ONLY | the ResultSet may not be

updated

ResultSet. CONCUR_UPDATABLE the ResultSet may be

updated

© Clear View Training 2005 v1.3 23

i getXXX() methods ee notes!

= The ResultSet has a wide range of methods to
return SQL types such as VARCHAR as equivalent
Java types

= For example rs.getString(“NAME”) returns the
product name as a String

= In fact, we can get any of the SQL types with getString(...)
and it will automatically be converted to a String

= The getXXX(...) methods can take a column name or
the number of the column

= column numbers start at 1 and go from left to right

© Clear View Training 2005 v1.3 24

JDBC
2.0

i ResultSet navigation methods

Method Semantics
first() Moves cursor to first row
last() Moves cursor to last row
next() Moves cursor to next row
previous() Moves cursor to previous row
beforeFirst() Moves cursor to just before the first row
afterLast() Moves cursor to just after the last row

absolute(int)

Moves cursor to a row index. If positive — counting from
the front, if negative — from the back

relative(int)

Moves cursor a relative number of rows, positive or
negative from the current position

© Clear View Training 2005 v1.3 25

i Working with ResultSets

s We can limit the number of rows that a ResultSet
can contain by using:

Statement statement = con.createStatement();
statement.setMaxRows(100);

= If a Statement returns multiple ResultSets, then we
can move to the next ResultSet as follows:

while (statement.getMoreResults())

{

rs = statement. getResultSet();

© Clear View Training 2005 v1.3 26

i Updateable ResultSet

2.0
= If the statement Is created to be of type
ResultSet. CONCUR_UPDATABLE, then we
may be able to update the database by
modifying the ResultSet itself

= this may not be supported by all DBMSs as it is
not a mandatory requirement for JDBC 2.0

compatibility

© Clear View Training 2005 v1.3 27

2.0
i updateXXX(...) methods

= Like the getXXX(...) methods, the ResultSet has a
wide range of updateXXX(...) methods to change
the value of SQL types in the ResultSet

= For example rs.updateString(“PRICE”, 40.0F)
changes the price of a product

= we have to be very careful that that all the types in an
update expression match

= The updateXXX(...) methods can take a column
name or the number of the column

= column numbers start at 1 and go from left to right

© Clear View Training 2005 v1.3 28

JDBC
i Updating a row
= This Is a three step procedure:

= Navigate to the appropriate row using a
SELECT and ResultSet navigation methods

= update the field values in the ResultSet
= write the change back to the DB

rs.first();
rs.updateFloat(, 40.0F);
rs.updateRow();

© Clear View Training 2005 v1.3 29

JDBC
2.0

i Inserting a row

= This Is a three step procedure:
= Navigate to insert row
= update the field values in the ResultSet
= write the row to the DB

rs.moveTolnsertRow();

rs.updateString(,);
rs.updateString("1D",);
rs.updateFloat(, 40.0F);
rs.insertRow();

© Clear View Training 2005 v1.3 30

JDBC
i Deleting a row
= This Is a simple two step procedure:

= havigate to row to be deleted
= delete the row

rs.last();
rs.deleteRow();

© Clear View Training 2005 v1.3 31

i Prepared statements

= |f we want to execute the same SQL
statement several times, we can create a
PreparedStatement object:

at the point of creation of a PreparedStatement
object the SQL code is sent to the DB and
compiled. Subseguent executions may therefore
be more efficient than normal statements

PreparedStatements can take parameters

© Clear View Training 2005 v1.3 32

Prepared statement example

©COoO~NOOUILA,WN P

import java.sql.*;
class PreparedStatementTest

{

}

public static void main(java.lang.String[] args)

{

}

try
{

Class.forName("COM.ibm.db2.jdbc.app.DBZDriver"),

Connection con = DriverManager.getConnection(“jdbc:db2: TEST", "db2admin™, " db2admin "),

PreparedStatement findBooks = con.prepareStatement(

"SELECT NAME FROM PRODUCT WHERE NAME LIKE ? ");

findBooks.setString(1, "%Java%"),
ResultSet rs = findBooks.executeQuery();
while (rs.next())
{ System.out.printin("Name: "+ rs.getString("NAME")); }
findBooks.setString(1, "%UML%");
rs = findBooks.executeQuery();
while (rs.next())
{ System.out.printin("Name: "+ rs.getString("NAME")); }
findBooks.close();
con.close();

} catch(Exception e) { e.printStackTrace(); }

© Clear View Training 2005 v1.3

33

i Transactions

= Normally each SQL statement will be committed
automatically when it has completed executing
(auto commit Is on)

= A group of statements can be committed together
by turning auto commit of7, and explicitly
committing the statements ourselves

= This ensures that if any of the statements fail, they
all fail. We can then ro// back the transaction

© Clear View Training 2005 v1.3 34

i JDBC transaction modes

con.setTransactionlsolation(/mode)

= TRANSACTION_ NONE
= transactions are disabled or not supported

= TRANSACTION_ READ UNCOMITTED

= other transactions may see the results before the transaction is committed

= “dirty read” - uncommitted rows might be rolled back if the transaction fails.
= TRANSACTION READ_COMMITTED

= dirty reads are not allowed.

= TRANSACTION_REPEATABLE_READ

= If a transaction performs multiple reads on a row that is being changed by another
transaction, then it does not see the changes

= TRANSACTION SERIALIZABLE
= same as TRANSACTION_REPEATABLE_READ but also protects against row insertions

= If a transaction does a read, another transaction inserts a row, and the first transaction
does another read, the first transaction does not see the new row.

© Clear View Training 2005 v1.3 35

‘L Transaction example

1 importjava.sgl.”;

2 class TransactionTest

3

4 public static void main(java.lang.String[] args)

5

6 try

7 {

8 Class.forName("COM.ibm.db2.jdbc.app.DBE2Driver"),

9 String url ="jdbc:db2: TEST";

10 Connection con = DriverManager.getConnection(url, "db2admin”, "db2admin™);
11 Statement s = con.createStatement();

12 try

13 {

14 con.setAutoCommit(false);

15 s.executeUpdate("UPDATE PRODUCT SET PRICE = 40.00 WHERE ID ='0-201-57168-4"");
16 s.executeUpdate(

17 "UPDATE REVIEW SET COMMENT = 'Now on sale!" WHERE BOOKID ='0-201-57168-4" ");
18 con.commit();

19 }catch(SQLException e) { con.rollback(); }

20 finally{ con.close(); s.close(); }

21 }catch(Exception e { e.printStackTrace(); }

22 }

23 }

© Clear View Training 2005 v1.3

36

2.0
i Batch updates

= JDBC 1.0 was very inefficient for loading a lot of data
Into a DB - a separate SQL command had to be
executed for each record changed

= JDBC 2.0 allows batch updates
= Mmultiple statements can be executed as a single batch
= we can roll back the whole batch if a single statement fails

= We simply add statements to be batched to a

Statement or PreparedStatement object using
addBatch()!

= We can remove the statements using clearBatch()

© Clear View Training 2005 v1.3 37

JDBC
2.0

Batch update example

O©CoOoO~NOO Ul WN PR

import java.sql.*;
class BatchInsertProducts

{

public static void main(java.lang.String[] args) throws SQLException, ClassNotFoundException

{

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");
String url ="jdbc:db2: TEST";
Connection con = DriverManager.getConnection(url, "db2admin”, "db2admin™);
Statement s = con.createStatement();
try
{

con.setAutoCommit(false);

s.addBatch("INSERT INTO PRODUCT " + "VALUES ('The Object Constraint Language’, " +
"'0-201-37940-4', 29.95, 'All about constraints’)");

s.addBatch("INSERT INTO PRODUCT " + "VALUES ('The Rational Unified Process', " +
"'0-201-60459-0",29.95, 'A good introduction to RUP")");

int[] count = s.executeBatch();

con.commit();

}catch(SQLException e) { con.rollback(); }
finally{ con.close(); s.close(); }

© Clear View Training 2005 v1.3 38

i Stored procedures

= The syntax for defining a stored procedure Is
different for each DBMS

= Use the stored procedure tools that come with
the RDBMS

= The syntax for calling a stored procedure Is
different for each DBMS

= JDBC defines a special escape sequence syntax
that allows stored procedures to be called in the
same way on any RDBMS

© Clear View Training 2005 v1.3 39

i ESscape seguences

{?= call <procedure-name>(<argl>,<arg2>, ...)}
{call <procedure-name>(<argl>,<arg2>, ...)}

= The ? represents a return value

= <procedure-name> is the name of the stored
procedure

= <argl> etc. are the arguments passed Iinto
and out of the stored procedure

© Clear View Training 2005 v1.3 40

i Stored procedure example

import java.sqgl.*;
class StoredProcedureExample

{

}

public static void main(java.lang.String[] args)

{

}

try
{

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");
Connection con = DriverManager.getConnection(“jdbc:db2: TEST", "db2admin”, " db2admin ");

CallableStatement cs = con.prepareCall("{call DE2ADMIN.ALLPRODUCTS}");

cs.execute();
ResultSet rs = cs.getResultSet();
while (rs.next())

String name =rs.getString("NAME™");
float price =rs.getFloat("PRICE");
System.out.printin("Name: "+name+", price: "+price);

con.close();
cs.close();

}catch(Exception e }{ e.printStackTrace(); }

© Clear View Training 2005 v1.3

create a callable
statement

41

*Jsing input parameters

1 importjava.sql.*;

2 class StoredProcedureParameterExample

3

4 public static void main(java.lang.String[] args)

5 |

6 try

7 {

8 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

9 Connection con = DriverManager.getConnection("jdbc:db2: TEST", "db2admin", "db2admin™);
10 CallableStatement cs = con.prepareCall("{call DE2ADMIN.FINDPROD2(?)}");

11 cs.setString(1, "%UMLY%");

12 cs.execute();

13 ResultSet rs = cs.getResultSet(); set the

1!‘5‘ W{h"e (rs.next()) parameter value we specify a
16 String name = rs.getString("NAME"); single parameter
17 float price = rs.getFloat("PRICE");

18 System.out.printin("Name: "+name+", price: "+price);

19 }

20 con.close();

21 cs.close();

22 }catch(Exception e){ e.printStackTrace(); }

23 }

24 '}

© Clear View Training 2005 v1.3 42

i Metadata

= JDBC has faclilities to get information about a
ResultSet or DB

= for a ResultSet, this information may include the number
and names of the columns, the types of the columns etc.

=« for a DB this information may include the name of the
driver, the DB URL etc.

= This information about a ResultSet or DB is known as
metadata

= See the following classes for detalils:
s ResultSet — see ResultSetMetadata
= Database — see DatabaseMetadata

© Clear View Training 2005 v1.3 43

Getting metadata

= Getting database metadata:

Connection con = DriverManager.getConnection(
DatabaseMetaData dmd = con.getMetaData();

= Getting ResultSet metadata:

Statement statement = con.createStatement();
ResultSet rs = statement.executeQuery(
ResultSetMetaData rsmd = rs.getMetaData();

© Clear View Training 2005 v1.3

44

i Summary

» We have looked at:

= 4 step approach to JDBC
=« Connection
« drivers
= Statement
=« PreparedStatement
= batch update
« transactions
= CallableStatement (stored procedures)

= ResultSet handling
= Metadata

© Clear View Training 2005 v1.3

45

!'_ Appendix: IBM DB2 (v6)

© Clear View Training 2005 v1.3

46

i Installing the JDBC 2.0 driver

s 10 Install JDBC 2.0:

= go to the directory sqllib\javal2
= run the command usejdbc?2

= To switch back to 1.2.2:
= go to the directory sqllib\javal2
= run the command usejdbcl

© Clear View Training 2005 v1.3 47

	JDBC
	Copyright notice
	What is JDBC
	The 4 step approach to JDBC
	Example JDBC program
	Opening a connection to the DB
	Loading a driver
	There are 4 categories of driver
	Type 1 JDBC-ODBC Bridge
	Type 2 Native API
	Type 3 JDBC-Net drivers
	Type 4 Native Protocol drivers
	Making a connection
	Creating Statements
	Example – creating a table
	executeUpdate(String sql)
	Example: inserting rows
	executeQuery(String sql)
	Example: selecting rows
	ResultSet
	Types of ResultSet
	type
	concurrency
	getXXX(…) methods
	ResultSet navigation methods
	Working with ResultSets
	Updateable ResultSet
	updateXXX(…) methods
	Updating a row
	Inserting a row
	Deleting a row
	Prepared statements
	Prepared statement example
	Transactions
	JDBC transaction modes
	Transaction example
	Batch updates
	Batch update example
	Stored procedures
	Escape sequences
	Stored procedure example
	Using input parameters
	Metadata
	Getting metadata
	Summary
	Appendix: IBM DB2 (v6)
	Installing the JDBC 2.0 driver

