Object-Oriented Databases
Support for Context-Aware Data Management

• Version Model
• Query Processor
• Implementation
It's been a long way...

Mainframe Computer Workstation Personal Computer Laptop Computer

Palmtop Computer Media Phones Disappearing Computer

What will be next?
...and the road goes on and on.

- So far, information systems have always coped with these ever-changing platforms and requirements
 - hierarchical databases
 - network databases
 - relational databases
 - object-oriented databases
 - object-relational databases
 - engineering databases
 - lightweight databases
 - personal databases
 - mobile databases
 - context-aware databases?
The Need for Context-Aware Computing

- **Mobile computing**
 - device limitations, such as reduced interaction bandwidth
 - location, environment, tasks, preferences, history, device characteristics, ...

- **Pervasive computing**
 - lack of traditional interfaces, such as keyboards or screens
 - environment, tasks, moods, preferences, history, personality, background, ...

- **Web engineering**
 - content adaptation and proactive behaviour
 - personalisation, internationalisation, access channel or mode, ...
Solutions for Context-Aware Computing

- Models
 - context representation
 - context management

- Infrastructures
 - context gathering
 - context processing and augmentation
 - trigger-based application adaptation

- CASE tools
 - model-based generation of context-aware applications
Solutions for Context-Aware Computing

- Very few context-aware information systems, but...
 - temporal databases
 - engineering databases (CAD, CAM)
 - software configuration management

...have addressed comparable problems in the past

- Upshot
 - stratum approaches built on top of existing systems do not work
 - experience in models, storage, indexing and query languages
 - context-aware data management has different requirements in terms indexing and query processing
Positioning of Our Work

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>Use cases</td>
<td>UML use case diagrams, ...</td>
</tr>
<tr>
<td>User studies</td>
<td>Usability, field tests, ...</td>
</tr>
<tr>
<td>Specifications</td>
<td>Mock-ups, descriptions, ...</td>
</tr>
<tr>
<td>Modelling</td>
<td></td>
</tr>
<tr>
<td>Data Models</td>
<td>E/R, Relational Model, OM, ...</td>
</tr>
<tr>
<td>Software Models</td>
<td>OMT, UML class diagrams, ...</td>
</tr>
<tr>
<td>Domain-specific Models</td>
<td>OOHDM, WebML, Hera, ...</td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
</tr>
<tr>
<td>Manual</td>
<td>IDE (Eclipse, Visual Studio, ...)</td>
</tr>
<tr>
<td>Semi-Automatic</td>
<td></td>
</tr>
<tr>
<td>Automatic Code Generation</td>
<td>WebRatio</td>
</tr>
<tr>
<td>Platforms</td>
<td></td>
</tr>
<tr>
<td>Relational Databases</td>
<td>SQL Server, mySQL, Oracle, ...</td>
</tr>
<tr>
<td>Object-Oriented Databases</td>
<td>ObjectStore, db4o, OMS, ...</td>
</tr>
<tr>
<td>(Programming) Languages</td>
<td>Java, C#, JSP, XML, XSLT, ...</td>
</tr>
</tbody>
</table>
Context-Aware Information Systems

- **Goals**
 - Context-dependent query processing
 - mobile computing, pervasive computing, web engineering
 - Support for application development
 - web engineering, software engineering, product engineering

- **Approach**
 - Context notion and representation
 - Two-dimensional version model
 - Alternative versions (variants) for run-time context-awareness
 - Revisional versions (revisions) for design-time system evolution
 - Matching algorithm to select content-dependent variants
 - Compute best match rather than exact match
 - Integration into an object-oriented data management system
Context in Information Systems

- Context information is optional
- Information system has a well-defined default behaviour
- Available context information may vary
- Result is augmented or improved rather than specified by context
- Context representation needs to be general and open
Context, Context Space and Context State

- **Context space**
 - context dimensions that are relevant to an application
 - $S = \{name_1, name_2, ..., name_n\}$
 - $\forall i: 1 \leq i \leq n \Rightarrow name_i \in$ NAMES and therefore $S \subseteq$ NAMES

- **Context Value**
 - $c = <name, value>$, where $name \in$ NAMES and $value \in$ VALUES

- **Context**
 - $C(S) = \{<name_1, value_1>, <name_2, value_2>, ..., <name_m, value_m>\}$
 - $= \{c_1, c_2, ..., c_m\}$
 - $\forall i: 1 \leq i \leq m \Rightarrow name_i \in S$ and $\forall c_i, c_j \in C: c_i = c_j \Rightarrow name_i = name_j$

- **Context state**
 - special context $C_\star(S)$, $\forall name \in S$: $\exists <name, value> \in C_\star(S)$
Revisions and Variants

Revisions

- design-time
- "off-line" queries
- targeted at developers
- implicit and explicit creation
- serial

Variants

- run-time
- "on-line" queries
- targeted at users
- explicit creation only
- parallel
OM Object Metamodel
Version Model

- Metamodel extended with variants and revisions
 - variants are structurally favoured over revisions
 - run-time performance versus design-time performance
- Variants define a variant context $C_v(S)$
 - defines in which context a variant can be used
 - no two variants of an object can define the same $C_v(S)$
- Revisions are identified by a revision number
 - ascending sequence
 - counter is incremented when a new version is generated
- All versions of an object have the same types
Versioned OM Object Metamodel
Evolution of a Versioned OM Object
Identifying and Referencing Objects

- Both specific and generic references are supported
 - Object identifier format:
 - "id" @ "version" ["variant"]
 - Concept of **default variant** and **latest version**
 - Partially specified references can be completed automatically

- **Versioning of object graphs**
 - Based on object references
 - both generic and specific references can be used
 - local, managed within objects, uni-directional
 - versioning of relationships is dependent on versioning of objects
 - Based on associations
 - relation between objects based on tuples of object identifiers
 - represented as object with revisions and variants
 - global, managed outside objects, bi-directional
 - versioning of relationships is independent of versioning of objects
Automatic Completion of Object Identifiers

- For each dimension of the version model there is a default representation
 - Latest version
 - Default variant

- Partially specified references are completed as follows
 - 927[2] ➤ 927@4[2] \textit{default version}
 - 927@3 ➤ 927@3[0] \textit{default variant}
 - 927 ➤ 927@4[0] \textit{default version and variant}
Context-Aware Query Processing

MATCH(o, C*(S))
1 V₀ ← rng(HasVariants dr({o}))
2 V₁ ← V₀ × (x → (x × rng(HasProperty dr({x}))))
3 V₂ ← V₁ × (x → (dom(x) × fₛ(C*(S), rng(x))))
4 s₁ ← max(rng(V₂))
5 V₃ ← V₂ % (x → rng(x) = s₁)
6 if |V₃| = 1 ∧ s₁ ≥ s_min
 then v ← V₃ nth 1
 else v ← rng(DefaultValue dr({o})) nth 1
9 return v

Simple Scoring Function

\[fₛ(C₁, C₂) = \frac{1}{|N₁|} \sum_{n \in N₁} f_i(n, C₁, C₂) \]

\[f_i(n, C₁, C₂) = \begin{cases}
1 & \exists c₁ \in C₁, c₂ \in C₂ : name₁ = name₂ = n \land value₁ \equiv value₂ \\
0 & \text{otherwise.}
\end{cases} \]

Invoked for every object o accessed by the query evaluator

- Scoring function \(fₛ \) assigns a score value to every variant \(v \) of \(o \)
- Indicator function \(f_i \) uses matching condition \((\equiv) \) for context values
- The variant with the highest score \(s_{max} \) is returned, if
 - there is only one variant with \(s_{max} \)
 - the score \(s_{max} \) is above the system threshold \(s_{min} \)
Syntax for Context and Property Values

The indicator function \(f_i \) supports the following syntax for both context and property values:

<table>
<thead>
<tr>
<th>Type</th>
<th>Syntax</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>atom</td>
<td>(x)</td>
<td>Atomic value</td>
<td>en, 27</td>
</tr>
<tr>
<td>set</td>
<td>(x_1{:}x_n)</td>
<td>Set of atomic values (S := {x_1, \ldots, x_n})</td>
<td>at:ch:de, red:blue</td>
</tr>
<tr>
<td>range</td>
<td>(x_{\text{min}}..x_{\text{max}})</td>
<td>Range of atomic values (I := [x_{\text{min}}, x_{\text{max}}])</td>
<td>5.5..7.0, a..f</td>
</tr>
<tr>
<td>star</td>
<td>*</td>
<td>Wildcard</td>
<td>*</td>
</tr>
</tbody>
</table>
Matching Condition (\equiv) for Context Values

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>Matching Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATOM</td>
<td>ATOM</td>
<td>$x = y$</td>
</tr>
<tr>
<td>ATOM</td>
<td>SET</td>
<td>$x \in y$</td>
</tr>
<tr>
<td>ATOM</td>
<td>RANGE</td>
<td>$y_{\min} \leq x \leq y_{\max}$</td>
</tr>
<tr>
<td>ATOM</td>
<td>STAR</td>
<td>T</td>
</tr>
<tr>
<td>SET</td>
<td>ATOM</td>
<td>$y \in x$</td>
</tr>
<tr>
<td>SET</td>
<td>SET</td>
<td>$x \cap y \neq \emptyset$</td>
</tr>
<tr>
<td>SET</td>
<td>RANGE</td>
<td>$\exists k \in x : y_{\min} \leq k \leq y_{\max}$</td>
</tr>
<tr>
<td>SET</td>
<td>STAR</td>
<td>T</td>
</tr>
<tr>
<td>RANGE</td>
<td>ATOM</td>
<td>$x_{\min} \leq y \leq x_{\max}$</td>
</tr>
<tr>
<td>RANGE</td>
<td>SET</td>
<td>$\exists k \in y : x_{\min} \leq k \leq x_{\max}$</td>
</tr>
<tr>
<td>RANGE</td>
<td>RANGE</td>
<td>$\max(x_{\min}, y_{\min}) < \min(x_{\max}, y_{\max})$</td>
</tr>
<tr>
<td>RANGE</td>
<td>STAR</td>
<td>T</td>
</tr>
<tr>
<td>STAR</td>
<td>ATOM</td>
<td>T</td>
</tr>
<tr>
<td>STAR</td>
<td>SET</td>
<td>T</td>
</tr>
<tr>
<td>STAR</td>
<td>RANGE</td>
<td>T</td>
</tr>
<tr>
<td>STAR</td>
<td>STAR</td>
<td>1</td>
</tr>
</tbody>
</table>
Examples

\{(\text{format,html}), (\text{lang,en})\} \quad \{(\text{format,html}), (\text{lang,en}), (\text{loc,uk})\} \quad \{(\text{img,wbmp}), (\text{lang,en}), (\text{loc,uk})\}
Problems and Solutions

- Selection of undesired variants
 - value prefixes (+, –) denote required and illegal matches
 - examples: <img, +wbmp>, <user, –fred>

- Tie-breakers for ambiguous matches
 - weight factors $w(n)$ for context dimensions
 - weight factors for matching classes (atom, set, range, wildcard)
 - handling of under and over-specified variants

- General scoring function

\[
 f_s(C_1, C_2) = \frac{1}{|N|} \sum_{n \in N} (w(n) \times f_i(n, C_1, C_2)) \times \prod_{n \in N} f_{\pm}(n, C_1, C_2)
\]

\[
 f_{\pm}(n, C_1, C_2) = \begin{cases}
 1 & \exists c_1 \in C_1, c_2 \in C_2 : \text{name}_1 = \text{name}_2 = n \land \text{value}_1 \cong_{\pm} \text{value}_2 \\
 0 & \text{otherwise.}
\end{cases}
\]
Query Processing Modes

- **Local**
 - match context for every object individually
 - risk of "inconsistent" result sets
 - easy to integrate into existing query processor

- **Local with "convergence"**
 - match context for every object individually
 - add "unmatched" variant context to context state
 - result depends on the structure of the query tree

- **Global**
 - match context for all objects of the query tree
 - optimal, consistent and stable results
 - computationally complex
Limitations and Issues

- Sorted lists to specify user preferences
 - `<lang=de_ch, de, en, it, fr>`
 - update indicator function, makes matching more complex
- Logical expressions to specify complex conditions
 - `(lang=it && loc=ch) || (lang=it && loc=it)`
 - rethink notion and representation of context!
- Scalability
 - applications with large context space
 - information retrieval solutions (vector model, similarity measures)
- However, experiences so far do not suggest major problems related to these issues and limitations
Implementation
Outlook and Future Work

- Integration of context into query language
- Indexing of context-aware data
- Context-aware metadata
 - OMS represents everything as objects
 - collections, associations and methods already context aware
 - investigation of types, type hierarchies, collection hierarchies
- Context-aware programming
 - virtual method dispatching based on signature and context
 - prototype implementation in Prolog
Literature

Next Week
Course Review

• Summary and Exam Information
• Ongoing Research Projects
• Student Projects