Semantic Data Management for db4o

Moira C. Norrie, Michael Grossniklaus, Corsin Decurins,
Alexandre de Spindler, Andrei Vancea, and Stefania Leone

Institute for Information Systems
ETH Zurich
8092 Zurich, Switzerland
{norrie ,grossniklaus,decurtins,despindler,vancea, leone}@inf .ethz.ch

Abstract. Object databases such as db4o provide a very simple and
effective way of making application objects persistent. However, they
offer limited support for high-level database application programming in
terms of facilities for the management of complex interrelated collections
of data objects over long periods of time. Concepts of semantic data
models such as role modelling, and associations are lacking and this
results in a new impedance mismatch between the program and data
models of the application. To address this problem, we have developed a
semantic data management layer for db4o which supports role modelling,
associations and a declarative query language.

1 Introduction

Object databases such a db4o [1] provide a very simple and effective way of mak-
ing application objects persistent. They also support various forms of querying
over these objects such as query-by-example mechanisms to retrieve objects,
query expression trees and iterator query methods. For applications that sim-
ply require persistence of program data, these solutions avoid the well-known
problems of impedance mismatch and the heavy mapping and administrative
overheads often associated with the use of relational storage. However, com-
mercial object databases lack support for high-level database application pro-
gramming where facilities are required not just for the persistent storage and
retrieval of data, but for the management of complex interrelated collections of
data over long periods of time. Concepts well known from database systems such
as constraints and triggers are usually absent and support for object and schema
evolution minimal at best.

One of the major motivations within the database research community for
moving to object-oriented database technologies from relational technologies
was the lack of semantic expressiveness of the relational model. In relational
databases, a single construct is used to represent both entities and relationships
and the concepts of primary and foreign keys represent, not only relationships be-
tween entities, but also links between tuples representing parts of deconstructed
entities resulting from normalisation and means of representing entity type hier-
archies. A great deal of research effort in past years went into developing seman-
tic object data models capable of not only dealing with complex structures, but

2 M. C. Norrie et al.

also representing object role modelling, various forms of constraints and treating
associations as first class constructs. However, although numerous research sys-
tems were built based on such models (e.g. [2-4]), they were considered mainly
as prototyping or modelling tools and few of these concepts have made it into
commercial object databases. One of the main reasons was that, although the
impedance mismatch between the program and storage models disappeared, an-
other one was introduced between the data and the program models since the
former typically required a much more flexible type system than that found in
object-oriented programming languages such as Java, C# and C++.

Recently, there has been a revival of interest in object databases, in part due
to the need for lightweight solutions in the rapidly growing market of mobile and
embedded applications. We therefore think that it is time to revisit the issues
of how to support complex data management based on object databases. In the
Avon project [5], we have developed a semantic data management layer on top of
db4o in order to raise the level of the application programming interface for the
developers of information systems. We believe that the strength of a platform
lies in the strength of the model that it supports and we therefore have based
this layer on an existing semantic object data model that integrates features of
extended entity-relationship and object role models with object-orientation [6].

In Sect. 2 we discuss the requirements of such a framework in terms of data
modelling support. The main concepts of the OM data model on which the
semantic data management layer is based are introduced in Sect. 3. The archi-
tecture of Avon is described in Sect. 4. Concluding remarks are given in Sect. 5.

2 Requirements

Object-oriented programming languages such as Java, C# and C++ model ap-
plication domains in terms of object classes that specify the set of stored proper-
ties and methods used to represent application entities. Class hierarchies repre-
sent the classification of entities into semantic groups and subgroups according
to the specialisation and generalisation of application concepts. When an object
is created, it is created as an instance of its most specific class. In most object-
oriented programming languages, the association between an object and its class
is fixed at the time of creation and is exclusive. Dependencies and interactions
between objects of the same class or different classes are typically represented
as attributes where the values are object references.

In database application programming, data is long-lived and an object is a
representation of a real-world entity throughout its lifetime. Real-world entities
can have multiple roles and these roles may change over time. Query and update
operations may address specific object roles. The means of representing the clas-
sification of entities therefore needs to be flexible enough to allow an object to be
associated with more than one role at the same time and to gain and lose roles
dynamically. For example, a newly created document may be active and a draft,
then cease to be active only to later be reactivated and a final version produced.
At the same time, a document about database programming languages may be

Semantic Data Management for db4o 3

classified according to the content as a programming languages document and
then later also classified as an information systems document.

Further, the dependencies and interactions between objects are role-depen-
dent and may themselves be specialised over role hierarchies. Thus a general as-
sociation between documents and conferences may be specialised into Submitted
for the relationship between drafts and conferences and Published for the rela-
tionship between final versions and conferences. Relationships between objects
are regarded as two way associations that can be navigated in both directions.
Query languages are generally declarative and based on operations over bulk
structures. It is therefore convenient if both object roles and associations can be
manipulated directly through operations on bulk structures rather than having
to use iterators and pointer chasing. As an example, consider a query to find
all documents which were rejected at least once before being published. Ideally,
we would like to express this in terms of a simple difference operation of the
form Submitted — Published, taking the documents of the resulting set of pairs
representing the association to obtain the required set of documents.

From the above discussion, we can identify some key data modelling require-
ments for database applications. We now consider each of these in turn and what
it implies for an object database system.

Role Modelling

Since entities may have several roles simultaneously and different roles are as-
sociated with different object classes, multiple instantiation must be supported
at the level of the type system. This means that objects may have multiple
types where these types may belong to different paths within the type hierar-
chy. Further, to support object evolution, it must be possible for objects to gain
and lose types dynamically. These requirements are in direct conflict with the
type systems of most object-oriented programming languages which is a well-
documented issue, see for example [7-11]. Several solutions have been proposed
which rely on creating explicit associations between objects and role-based prop-
erties rather than relying on the type system to represent these (e.g. [10,12]).
This means that either the data management layer effectively re-implements
type management or certain aspects of type checking are lost when it comes to
dealing with roles. It also sharply distinguishes between types which represent
fixed roles such as document and those which can be gained and lost such as
draft. While this sharp distinction can be positive in terms of controlling object
evolution, it results in a loss of uniformity in terms of how roles are handled.
It also restricts schema evolution in that it is not easy to change a fixed role
into a dynamic role and vice versa. In the software engineering world, this prob-
lem of object role modelling is addressed partially through the proposed use
of the delegation design pattern [13] or explicit role modelling frameworks [14].
However, again, this is really a way around the problem based on splitting the
fixed part of an object from the potentially dynamic role-based parts rather than
an ideal solution. Without introducing fundamental changes to object-oriented
programming languages such as introduced in database programming languages

4 M. C. Norrie et al.

such as Fibonacci [8], the tension between the data model abstractions and those
of the programming language type system cannot be avoided. Our approach is
to relieve the tension by introducing a two-level model that distinguishes typ-
ing from classification and deals with representation issues and programming
language concepts at the lower level and data modelling concepts at the upper
level. This enables database objects and types to be dynamically composed from
programming language object instances at runtime in a manner that supports
the flexibility required for object role modelling in a database application.

Associations

Representing relationships between objects as a separate construct has several
advantages over the use of reference attributes. First, it is easier to ensure
the consistency of binary associations since they are represented in a single
place. Secondly, it enables associations to be manipulated as bulk structures
and therefore can support both high-level operations over associations as well as
navigational-style processing. Last, but not least, the use of a separate associa-
tion construct encourages modularity and re-usability in applications. The pro-
posal to make relationships a first-class construct in programming languages has
also been around for a long time (see e.g. [15, 8]). Interestingly, in some object-
oriented database systems, for example Objectivity /DB [16], binary associations
are represented internally as separate constructs to facilitate consistency main-
tenance, but are modelled as pairs of reference attributes in the object classes
involved in the relationship. We believe that this separation of entities from
their relationships should also be visible at the application programming level
for the reasons given above. Our approach is therefore to introduce an association
construct at the data management level to represent relationships between ap-
plication objects explicitly rather than as reference attributes embedded within
classes at the type level.

Ad-hoc Declarative Querying

Object-oriented database systems stand at the intersection of the domains of
information systems and software engineering and address requirements from
both fields. As a consequence, the users working with object-oriented database
systems can be software developers as well as database designers and administra-
tors. Clearly, these two user groups have very different backgrounds and skills.
Past and current object-oriented database systems have always put an emphasis
on supporting the needs of developers such as an object-oriented data model
together with the features traditionally known from software engineering. The
needs of database designers and administrators, however, have often been ne-
glected in comparison. Apart from functionality readily associated with database
systems such as persistence, secondary storage management, concurrency control
and recovery facilities, the presence of an ad-hoc declarative query language is
maybe the most important requirement for database experts [17]. Often, mem-
bers of this group of users are not skilled in object-oriented programming and

Semantic Data Management for db4o 5

need to be provided with a high-level language that enables them to easily ac-
cess and browse the content of a database as well as configuring and tuning the
database system itself. The need for such languages has also been recognised by
the ODMG Standard [18] that proposes OQL as an object-oriented query lan-
guage to serve this purpose. Unfortunately, few vendors have chosen to imple-
ment the full functionality of OQL in their products in the past. Retrospectively,
the failure to do so is often seen as one of the many factors why object-oriented
database systems had difficulties to compete with their relational counterparts.
Apart from an application programming interface, we therefore feel that it is
important to offer a declarative object-oriented language to define, manipulate
and query databases.

3 OM Data Model

The OM model was developed in the early 90s with the intention of bridging
the gap between the semantic object models proposed for conceptual modelling
and the data models of object-oriented database management systems. It was
therefore important that it be semantically expressive and support key mod-
elling abstractions [19,20], while being amenable to efficient implementation.
As proof of concept, over the last decade, there have been a number of im-
plementations of the model based on different storage technologies, including
native, relational and object storage systems [21,4]. In parallel, specific OM lan-
guages have evolved to support data definition, querying, data manipulation and
method implementation. More recently, a focus of the research within our group
has been to use these systems as experimental research platforms to investigate
how concepts to support domains such as web engineering and mobile computing
can be integrated into database systems through an extension to the metamodel.

While the model and approach can be considered successful in terms of our
experiences in using the systems as platforms for teaching and research, along-
side the development of various applications, there are clear limitations in terms
of scalability and adoption. The problems of scalability stem simply from a
lack of resources to investigate in detail mechanisms for query processing, index
structures, transaction management, distribution and storage management that
would ensure good performance in the case of large-scale systems. These issues
would need to be addressed if the systems were to be considered for release out-
side of the research community, but they are not the only factors that would
limit the interest of application developers. Generally, developers want to work
with familiar paradigms and languages and, ideally, would like an integrated pro-
gramming environment with support for data management rather than having
to interface to stand-alone database systems.

With the emergence of db4o, we noted that while there were many advances
over earlier object-oriented database systems in terms of ease of application
development, the underlying data model was the same, namely the abstractions
offered by the type systems of languages such as Java and C#. We wanted
to show how better support for database application programming could be

6 M. C. Norrie et al.

achieved by building a semantic data management layer on top of db4o. The
OM model provides an ideal basis given its positioning between semantic data
models and object-oriented database systems. At the same time, it allowed us to
build on the efforts of the db4o development community in providing a persistent
object store. It also enables us to address the needs of Java application developers
directly by providing them with a framework to support database application
programming within their development environment.

Having provided the background to our approach, we now introduce the main
concepts of the OM data model. Essentially, the OM data model is an integra-
tion of the well-known Entity-Relationship (E/R) model [22] and object-oriented
models, but it should be noted that it has both operational and structural com-
ponents. It builds on the notions of application entities and relationships familiar
from E/R models. However, in contrast to the E/R model where the notions of
entity types or entity sets are often used interchangeably, OM introduces a clear
separation between the typing and the classification of entities. This distinction
is achieved using a two-level model. On the lower level, types describe the repre-
sentation of entities, whereas the upper level captures the semantics of entities
using collections to represent semantic groupings.

document

text, figure

Fig. 1. OM type schema example

Each object is defined by at least one object type that specifies the attributes
and methods of its instances. Object types can form type hierarchies that are
built using inheritance between supertypes and subtypes as shown in Fig. 1. In
contrast to most existing object-oriented systems, OM supports the concepts of
multiple inheritance and multiple instantiation. Therefore while the type graph
in the figure may look similar to those of typical object-oriented programming
languages, a major difference is that it would be possible to create an object
which is an instance of all types in that graph. This would allow us to represent
the fact that an SVG document is on the one hand an XML document, but
at the same time also a figure with a caption. Objects and object types are
dynamically composed at run-time from information and type units, respectively,
which allows this flexibility. Objects can also gain and lose types dynamically.

Semantic Data Management for db4o 7

Objects are classified through membership in collections. As an object can be
a member of multiple collections at the same time, the OM data model is said to
support multiple classification. Each collection has a member type that governs
which objects can be contained in the corresponding collection. The member type
also determines the default view of objects when accessed in the context of that
collection. Just as types can be specialised through subtypes, the classification of
objects can be specialised through subcollections. A collection may have multiple
subcollections and supercollections. Classification constraints such as disjoint,
cover, partition and intersect may be placed over these collection families. For
example, in Fig. 2, the collection Documents has five subcollections. On the
right-hand side, subcollections Drafts and Finals are used to classify documents
according to their state. Since each document must belong to exactly one of these
two subcollections, a partition constraint is placed over them. On the left-hand
side, documents are classified according to semantic content, i.e. the topic. In this
case, we have only two topics and a cover constraint placed over them says that
each document must belong to at least one of these, but it may possibly belong
to both. The fifth subcollection ActiveDocuments is a collection of documents that
users are currently working on.

dn{‘llle pdf| (O,()
Information :
. - 04
8 2 .
document] 3 By Documents . §_ N — o /\ Proceedings
Program | .- 7AY " Finals Published ©
Languages | | i L

document

Active
Documents | |

Fig. 2. Example of an OM classification schema

These five subcollections can be considered as providing three alternative
classification views over documents according to status, currency and topic. A
document can belong to several subcollections to represent its multiple roles.
Thus a document can be active, a draft and about database programming lan-
guages and so classified under both topics. Objects can gain and lose roles by
adding them to and removing them from collections. This may in turn propagate
changes at the type level to ensure that the object has the correct member types.
Note that since it is not required that a collection be defined for each type and
it is possible to have multiple collections with the same member type, the typing
layer and the classification layer are almost independent of each other.

A feature of the OM model stemming from the object-oriented programming
world is the fact that collections can have different behaviours. Collections can
either be sets, bags, rankings or sequences depending on whether they can con-
tain duplicates and are ordered or unordered. A set is an unordered collection

8 M. C. Norrie et al.

with no duplicates. A bag is unordered but may contain duplicates. A sequence
is ordered and can contain duplicates, whereas a ranking is ordered but can-
not contain duplicates. All operations over collections and also the classification
constraints have been generalised over sets, bags, sequences and rankings.

Relationships in OM are represented by associations that are defined in terms
of a source and a target collection together with cardinality constraints. Figure 2
shows three associations—Submitted with source Drafts and target Proceedings,
Published with source Finals and target Proceedings, and Contains with Documents
as both source and target. Associations are a first-order concept of the model
and are defined as n-ary collections with n > 1. For example, the association
Submitted would be a binary collection with pair values of the form (d,p) where
d is a member of Drafts and p is a member of Proceedings. Associations can also
be specialised over roles. For example, the Submitted and Published associations
could have been defined as subcollections of a general AuthoredFor association
between Documents and Proceedings.

OM data models can be specified graphically using the notation shown in the
above figures or using a textual definition language. This data definition language
is a subset of the Object Model Language (OML) [23] which also encompasses
a data manipulation and a query language. The query language is based on a
collection algebra that defines a set of operators to manipulate and process collec-
tions and associations. Apart from being used for data definition, manipulation
and querying, OML also serves as a declarative object-oriented implementation
language for the methods of database objects as well as for database macros and
triggers. As stated at the beginning of this section, a family of data management
systems have been built that allow OM data models to be implemented directly.
All systems were based on an OM metamodel and, in these systems, all data
and metadata is represented as objects to allow maximum flexibility.

It is beyond the scope of this paper to describe all aspects of the OM model
in detail, especially the generalised semantics of the constraints over collections
and also the algebra and associated languages. Further details of the OM model
can be found in [6,4]. The remainder of the paper gives an overview over the
architecture of the semantic data management layer that was developed for db4o
based on this model.

4 Architecture

The architecture of the Avon framework is composed of three main layers. The
lowest is the storage layer which takes care of object persistence. On top of the
storage layer, the model layer implements the OM data model presented in the
previous section. Finally, the interface layer maps the concepts of the model layer
to an application programming interface that, similarly to JDBC, is shared by
all implementations of the OM model. Thus, the semantic richness of the OM
data model is made available to client applications which are required to interact
with the interface layer only. Figure 3 shows the layered architecture of Avon
and its main components.

Semantic Data Management for db4o 9

‘r— N Value Model 1 Database Management 1 Development Tools _}
[
8 }
5 |
| E Caching Drivers |
|
! |
[r 5 1
! Object Event OML |
! Model Model Index Management !
| |
' |
|
'8 Parser Transaction Management }
=
1 |
| |
} L Processor | Site Management }
| |
| e e e e e e I
‘r— N Storage Management) Query Engine 1 Storage Model _}
|
B |
1o I
I O
| & Index Management db4o |
|
! |

Fig. 3. Avon architecture

The storage layer encapsulates all matters of persistence by defining its own
concepts for storage management and then using the db4o object database to
actually store the corresponding objects. The Storage Management interface
component is used by the model layer to insert, retrieve, update and delete ob-
jects. Data is passed to this interface component following the concepts defined
within the Storage Model component. The Query Engine component of the stor-
age layer is used by components of the model layer to post queries and get their
results. It is responsible for query optimisation and processing. A low level In-
dex Management component builds and maintains index structures at the level
of the concepts defined within the storage model based on the index facilities
offered by db4o. Also, the query engine is responsible for managing temporary
objects such as collections containing query results that are too large to fit into
the memory.

The concepts of the OM data model are implemented within the Object
Model component of the model layer. Its main task is to provide a representa-
tion of the OM concepts using the Java object model. The event model features
its own concepts such as event types, handlers and triggers which are pooled
within the Fvent Model component. Both of these components provide the Java
classes representing their concepts, therefore enabling client applications to ac-
cess their functionality and manipulate the data that they hold. Consequently,
together with the database interface, OML components and external events, they
form the complete interface offered to client applications. The database interface
methods take and return objects of the types defined in the object and event

10 M. C. Norrie et al.

models. The OML component provides the Object Model Language (OML) con-
sisting of an algebraic query language, operation programming language as well
as a data definition and manipulation language. OML scripts can be evaluated
interactively using a database console or in terms of stored object methods and
database macros. In both cases, the statements are parsed by the Parser module
and interpreted by the Processor using the query engine of the storage layer.

The model layer also has components for index, transaction and site man-
agement. The Index Management component builds and maintains an index at
the semantic level of the OM data model, while the Transaction Management
component enables different concurrency control strategies to be implemented
and deployed. Finally, the Site Management component encapsulates connectiv-
ity and communication among multiple database instances. In particular, it is
used for the dissemination of events in the case that event triggers and handlers
are located on different instances.

The Avon database system can be accessed by client applications through
two main interfaces. One is the interface layer shown at the top of the figure
and the other is the previously mentioned database console that forwards input
directly to the OML component of the model layer. Based on a Value Model
that determines the representation of all values that can occur within the OM
data model, the interface layer provides a programming interface to client ap-
plications. Apart from creating, retrieving, updating and deleting objects, the
interface layer also provides functionality to create, manage and delete databases
through the Database Management module. Behind the scenes, the interface
layer takes care of transparently caching objects that have been previously re-
trieved or created by the application to avoid unnecessary communication with
the model layer. This cache is particularly important if the model and the inter-
face layer are separated by a network. The issue of cache coherency is addressed
using the trigger mechanism of the event system that allows objects in the cache
to be invalidated when they change in the database. Finally, based on the inter-
face layer, the Avon system also provides a set of development tools such as a
management interface based on Eclipse and a lightweight database browser.

Figure 4 illustrates how the document concept of the application scenario
presented in Sect. 3 is managed by the Avon semantic data management system.
The application interfaces with the system using the Document class that offers
high-level methods to access the fields of the corresponding object type. As can
be seen from the figure, the class on the interface layer wraps an instance of class
OMObject on the model layer.

Since the OM data model is semantically richer than the Java object model,
it is not possible to map application concepts directly to Java objects. There-
fore, class OMObject is the representation of an object as defined by the OM
data model providing the required semantics. For example, methods dress() and
strip() account for the possibility of having dynamically typed objects by allowing
instances to be added to and removed from objects. Instead of high-level setter
and getter methods as found in class Document, class OMODbject provides generic
methods to access attributes, namely setAttributeValue() and getAttributeValue().

Semantic Data Management for db4o 11

Interface Storage

Document InformationUnit

#OMObject object Set<InformationUnit> units ObjectID: object

TypelD: type

I
I
I
I
OMObject :
I
I
I
I

+getTitle(): String

|

|

|

|

|

|

|

|

|

| +getAttributeValue(OMObject type
+setTitle(String title) :

|

|

|

|

|

|

|

|

1

String name): Object ——— *getValue(String name): Object
+setAttributeValue(OMObject type, I +setValue(String name, Object value)
String name, Object value) |
+executeMethod(String name) |
+dress(OMObiject type) !
+strip(OMObject type) :
|
|
i

+getAuthor(): String
+setAuthor(String author)
+getkeywords(): Set<String>
+setKeywords(Set<String> keys)
+print()

Fig. 4. Avon layers example

Instead of storing an object as a single data unit, the storage model of the
storage layer uses the notion of information units represented by class Informatio-
nUnit to manage objects at the physical level. As discussed, the OM data model
supports dynamic multiple instantiation and therefore an object can have a set
of types that evolves over time. To cope with this requirement, each information
unit managed by the storage layer corresponds to one object type and persists
the values defined by this type. At run-time, the object is then dynamically
composed from the instances of class InformationUnit associated with an instance
of OMObject, according to the role in which the object is accessed.

5 Conclusions

We have revisited the issues of how to integrate database and programming lan-
guage concepts in order to support the development of database applications
within an object-oriented programming language such as Java. While seamless
object persistence and querying mechanisms such as those provided in db4o are
essential, we explain why they are not sufficient. Key modelling abstractions of
object data models such as roles and associations as well as an ad-hoc declarative
query language are necessary to represent the semantics of application entities
throughout their lifetime and also support notions of modularity and reusability
in application development. We describe how we have addressed this by devel-
oping a database application programming framework for Java programmers by
building a semantic data management layer on top of db4o.

References

1. Paterson, J., Edlich, S., Horning, H., Horning, R.: The Definitive Guide to db4o.
Apress (2006)

2. Missikoff, M., Toiati, M.: MOSAICO — A System for Conceptual Modelling and
Rapid Prototyping of Object-Oriented Database Applications. In: Proceedings of
ACM SIGMOD International Conference on Management of Data. (1994)

3. Jarke, M., Gallersdorfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S.: ConceptBase
— A Deductive Object Base for Meta Data Management. Journal of Intelligent
Information Systems 4(2) (1995) 167-192

12

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

M. C. Norrie et al.

Wiirgler, A.P.. OMS Development Framework: Rapid Prototyping for Object-
Oriented Databases. PhD thesis, ETH Zurich, Zurich, Switzerland (2000)

Global Information Systems Group, Institute for Information Systems, ETH
Zurich: OMS Avon Project Page: http://maven.globis.ethz.ch/projects/avon/.
Norrie, M.C.: An Extended Entity-Relationship Approach to Data Management
in Object-Oriented Systems. In: Proceedings of International Conference on the
Entity-Relationship Approach, Arlington, TX, USA. (1994) 390-401

Pernici, B.: Objects with Roles. In: Proceedings of IEEE/ACM Conference on
Office Information Systems. (1990)

Albano, A., Ghelli, G., Orsini, R.: Fibonacci: A Programming Language of Object
Databases. VLDB Journal 4(3) (1995)

Bertino, E., Guerrini, G.: Objects with Multiple Most Specifc Classes. In: Pro-
ceedings of European Conference on Object-Oriented Programming (ECOOP 95).
(1995)

Gottlob, G., Schrefl, M., Rocki, B.: Extending Object-Oriented Systems with Roles.
ACM Transactions on Information Systems 14(3) (1996)

Kappel, G., Retschitzegger, W., Schwinger, W.: A Comparison of Role Mechanisms
in Object-Oriented Modeling. In: Proceedings Modellierung’98, Report Nr. 6/98-1
(Angewandte Mathematik und Informatik, Universitét Miinster) (1998)

Supcik, J., Norrie, M.C.: An Object-Oriented Database Programming Environ-
ment for Oberon. In: Proceedings of the Joint Modular Languages Conference
(JMLC’97), Linz, Austria (1997)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

Riehle, D., Gross, T.: Role Model Based Framework Design and Integration. In:
Proceedings of Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA’98). (1998)

Albano, A., Ghelli, G., Orsini, R.: A Relationship Mechanism for a Strongly Typed
Object-Oriented Database Programming Language. In: Proceedings of Very Large
Database Conference. (1991)

Objectivity, Inc.: Objectivity/DB, Version 9.3: http://www.objectivity.com.
Atkinson, M., Bancilhon, F., DeWitt, D., Ditrich, K., Maier, D., Zdonik, S.: The
Object-Oriented Database Manifesto. In: Proceedings of International Conference
on Deductive and Object-Oriented Databases. (1989) 223-240

Cattell, R.G.G., Barry, D.K., Berler, M., Eastman, J., Jordan, D., Russell, C.,
Schadow, O., Stanienda, T., Velez, F.: The Object Data Standard: ODMG 3.0.
Morgan Kaufmann Publishers Inc. (2000)

Smith, J.M., Smith, D.C.: Database abstractions: Aggregation and generalization.
ACM Transactions on Database Systems 2(2) (1977) 105-133

Peckham, J., Maryanski, F.: Semantic Data Models. ACM Computing Surveys
20(3) (1988) 153-189

Kobler, A., Norrie, M.C.: OMS Java: Lessons Learned from Building a Multi-
Tier Object Management Framework. In: Proceedings of Workshop on Java and
Databases: Persistence Options, November 2, 1999, Denver, CO, USA. (1999)
Chen, P.P.: The Entity-Relationship Model — Towards a Unified View of Data.
ACM Transactions on Database Systems 1(1) (1976) 9-36

Lombardoni, A.: Towards a Universal Information Platform: An Object-Oriented,
Multi-User, Information Store. PhD thesis, ETH Zurich, Zurich, Switzerland
(2006)

