
 1

AN INDEXING METHOD FOR HANDLING QUERIES ON SET-
VALUED ATTRIBUTES IN OBJECT ORIENTED DATA BASES

I. Elizabeth Shanthi

Dept of Computer Science
Avinashilingam University
for Women, Coimbatore,

India.
shanthianto@yahoo.com

R. Kirutthika
Dept of Mathematics and
Computer Applications

PSG College of
Technology, Coimbatore,

India
kirutthikaraja@gmail.com

R. Nadarajan
Dept of Mathematics and
Computer Applications

PSG College of
Technology, Coimbatore,

India
nadarajan_psg@yahoo.co.in

ABSTRACT
 We propose a signature-based indexing method for object-oriented query handling in this paper. Signature file based
access methods initially applied on text for their filtering capability have now been used to handle set-oriented queries
in Object-Oriented Data Bases (OODBs). All the proposed techniques use either search methods that take longer
retrieval time or tree based intermediate data structures that traverse multiple paths thus making comparison process
tedious. In this paper a B+ tree based structure called Signature Declustering (SD) tree applied on set-valued attributes
is presented. We apply and study the behavior of subset-superset queries of OODBs on SD-tree. It is observed that SD-
tree which is retrieving all matching signatures in a single access handles both types of queries efficiently. Also the
maintenance cost and query response time of SD-tree is substantially reduced thus making it an efficient structure for
handling Object Oriented queries.

KEYWORDS
Signature file, Objected oriented query handling, Information retrieval, subset-superset queries.

1. INTRODUCTION
Object Oriented Data Base Systems (OODBSs) have been widely used by the database research community for the past
two decades due to their efficient modeling of data, various navigational patterns in database etc. Many experimental
and commercial systems such as Gemstone, Orion and O2 have been built [17]. OODB offers more powerful modeling
capability than Relational Data Base Management Systems. Hence OODB management becomes a prime issue to
address as the volume of data increases everyday in all computer-based applications. To derive useful information from
large databases indexing plays a vital role. Indexing that evolved with the concept of database management finds an
extensive analysis and applications in the literature. One such method called the signature file approach is preferred for
its efficient evaluation of set-oriented queries and easy handling of insert and update operations. Initially applied on
text data [2] it has now been used in other applications like office filing, relational and Object-Oriented Databases [5,
17, 19] and hypertext. Signatures are hash coded abstractions of the original data. It is a binary pattern of predefined
length with fixed number of 1s. The attributes’ signatures are superimposed to form object’s signature. To resolve a
query, the query signature say Sq is generated using the same hash function and compared with signatures in the
signature file for 1s sequentially and many non-qualifying objects are immediately rejected. If all the 1s of Sq match
with that of the signature in the file it is called a drop. The signature file method guarantees that all qualifying
objects will pass through the filtering mechanism; however some non-qualifying objects may also pass the signature
test. The drop that actually matches the Sq is called an actual drop and drop that fails the test is called false drop. The
next step in the query processing is the false drop resolution. To remove false drops each drop is accessed and checked
individually. The number of false drops can be statistically controlled by careful design of the signature extraction
method and by using long signatures [2]. Different approaches have been discussed by researchers to represent
Signature file in a way conducive for evaluating queries, such as Sequential Signature File (SSF), Bit-Slice Signature
file (BSSF), Multilevel Signature file, Compressed Multi Framed Signature file, S-Tree and its variants, Signature
Graph and Signature tree[18]. An example of sample query evaluation using signatures is shown below.

Information
Retrieval

0010 0100
0100 0001

Block Signature 0110 0101

Sample queries

Matching query
 Keyword = Information 0010 0100
 Query descriptor 0010 0100
Block signature matches (Actual Drop)

 2

False Match query
 Keyword = Coding 0010 0001
 Query descriptor 0010 0001
Block signature matches but keyword does not (False Drop)

Non-matching query

Keyword = Information 0010 0100
Keyword = Science 0000 0110
Query descriptor 0010 0110
Block signature does not match

In this paper we study the advantages that could arise from representing signature file in a structure called SD-tree [6]
and applying it on set-valued attributes. In SD-tree all the set bits in a signature are distributed over various signature
nodes and all the signatures having a common set bit are clustered together so that query processing is fast and brings
all output signatures in a single access.

The rest of the paper is organized as follows. Section 2 discusses briefly discusses the background information in this
track. Section 3 is devoted to SD-tree structure and tree updates. Section 4 explains the algorithms for handling superset
/subset queries using SD-tree. Section 5 reports the results of the experiments conducted. Finally section 6 concludes
the work with an outlook on future work.

2. BACKGROUND

This section discusses set-valued attributes in OODBSs and some of the previous work on signature file based
approach for OODB query handling.

2.1 SIGNATURES IN OODB QUERIES
Today, most of the stored data consists of records with set-valued attributes. Since OODBSs handle efficiently multi-
valued attributes they are widely used. The basic query for this kind of data is the inclusive or partial match query that
retrieves all records containing specific attributes. Inclusive queries are divided into subset and superset queries [5].
Subset queries retrieve objects with set-valued attributes that contain the query set. In superset query, objects whose
set-valued attribute are contained in the query set are retrieved. For example consider the object schema partially shown
for a University database in Fig 1.

 Dept Programme

 Course

 Instructor
 Fig 1. Sample object schema
The classes with set-valued attributes are Dept, Instructor and Programme. Every object of Dept has a list of Pgm-name
offered in its attribute Programme. Similarly every Programme object has a list of Course-name and each Instructor
teaches one or more Course-name denoted in the attribute Course. For any query signature O’ and an object O
satisfying the query, subset query searching is denoted as
 O’ ⊆ O => q ⊆ s and for superset query O’ ⊇ O => q ⊇ s.
The right hand side of both equations denotes that the corresponding query (q) and object signature (s) also satisfy the
same.

2.2 RELATED WORK

Research reports on the evaluation of queries with set-valued predicates are few. Some indexes particularly for object-
oriented and object-relational systems like nested index [1], path index [1], multi index [11], access support relations
[9] and join index hierarchies [20] have been analyzed. With the exception of signature files [2, 19] and RD Trees [8]
the problem of indexing data items with set-valued attributes has been ignored by the database community [16].
Signatures are preferred to encode sets for three reasons [16]. First they are of fixed length and hence convenient for
index structures. Second set comparison operators on signatures can be easily implemented by efficient bit operations.
Third signatures are more space efficient compared to the conventional set representation. Some of the previous reports
on OODB query handling using signatures are listed below. In order to improve selectivity in the upper level of
signature-based tree structures Tousidou et. al [4] propose methods like linear split, quadratic split, cubic split etc. In
[5] the variation of a new method that combines linear hashing and S-tree is proposed to handle subset-superset queries.
Various schemes for evaluation of queries having nested predicates have been discussed in [7, 14, 17]. Norvag [10]

Dept-name
Programme *

Pgm-name
Course*

Inst-name
Dept-name
Course*

Course-name

 3

shows how logical object identifiers stored in an index structure reduces average object access cost. A trie tree
superimposed on an inverted file used as an index for subset-superset query evaluation is discussed by Terrovitis et al
[12]. Nikos [13] experiments various join types on set-valued attributes and infers that signature-based methods are
appropriate for set equality joins rather than inverted files. Helmer et.al [15] analyzes Nested-loop and Signature-Hash
algorithms for the evaluation of subset predicates joins. Paper [19] studies the subset-superset query handling in OODB
using signatures in SSF, BSSF and NIX. In this paper we go in a different line for handling OODB inclusive queries
using an intermediate structure called SD-tree that proves novelty over the other methods proposed recently. In the next
section we describe the structure of SD-tree [6] and list the algorithms used for tree updates.

3. THE STRUCTURE OF SD-TREE
 SD- tree has three types of nodes:

 Internal nodes
 Leaf nodes
 Signature nodes

The internal nodes form the upper tree and leaf nodes at the last but one level as in B+ tree. The signature nodes are at
the bottom level of the SD-tree. We will now explain the structure of the nodes in detail. To make discussion simple,
we assume the tree order as 3 for a signature file with 8 block signatures of length 12.

3.1 STRUCTURE OF NODES
An internal node of SD-tree is illustrated in Fig 2 in which pointers and keys alternate each other as in B+ tree. For a
tree of order 3 the internal node has two keys K1 and K2 and three pointers P1, P2, P3. These pointers are tree pointers
pointing to the nodes at the lower level. While searching, the left tree pointer is followed for values less than or equal to
the node value, else right pointer is followed.

P1 K1 P2 K2 P3

 Fig 2. A typical structure of an internal node

The leaf nodes appear in the last but one level of the SD tree. Like B+ tree all the key values appear in ascending order
of their values in the leaf nodes and are connected to promote sequential search. But unlike B+ tree in SD-tree each
value is followed by a signature node instead of data pointer. This is shown in Fig 3. Pointers P1 and P2 point to the
corresponding signature nodes for K1, K2; P3 is the forward pointer to next leaf node and P4 is the backward pointer
from next leaf node. These pointers help in optimal signature insertion and selection. The structure of a signature node
is shown in Fig 4. The signature node for Ki has 2i-1 binary combinations denoting the possible prefixes.

3.2 OVERALL STRUCTURE OF SD-TREE
 Consider the partially filled SD-tree shown in Fig 5(a). The tree has been constructed for signature length F = 12. It
is obvious that a tree of order 3 has height 2. Consider the signature file in Fig 5(b). To insert signature S1 with first
occurrence of 1 at position 2, access the leaf node with value 2, follow its signature node and write the signature value
as 1 (for S1) with the prefix 0 (for bit 1). In the same way S2 is inserted in signature node 1 with no prefix and
signature node 3 with prefix 10 (for bits 1 and 2). S4 will be inserted at signature node 1 with no prefix and signature
node 2 with prefix 1.

K1 P1 K2 P2 P3
P4

Fig 3. A typical leaf node entry

B1 List of Signatures having prefix B1
B2 List of Signatures having prefix B2
.
.

.

.
Bn List of Signatures having prefix Bn

Fig 4. A typical signature node entry

While inserting a signature there are two possible options to move to next 1s position in the leaf node. One is via the
sequential pointer between leaf nodes and the other is the top-down traversal of tree from root. To ensure optimal
search path the threshold (Th) is fixed at h+1 (h being the tree height plus one more level for accessing signature
nodes). As long as the number of sequential pointers traversed in leaf nodes is within the specified Th value the
sequential pointers are followed. This is calculated by finding the difference (d) between two consecutive 1s in a
signature divided by the number of entries per leaf node. This is given by the condition d / (p-1) ≤ Th , where p is the
order of the tree. The division here is integer division. When the above condition is not true, a new tree access is
initiated from root. Similarly to promote optimality between queries the difference between the last set bits of two
consecutive queries is compared with threshold and leaf node’s forward / backward pointers are used accordingly. The
procedures for tree maintenance are explained in the following section.

 4

 (a)

 S1 : 010 ……….
 S2 : 101 ……….
 S3 : 000 ……….
 S4 : 110 ……….

 (b)

 Fig 5. Sample SD-tree

3.3 TREE SEARCH AND UPDATES
This section lists briefly the algorithms for signature insert, delete and search operations on SD-tree [6]. A global flag F
is set to 0 indicating the search path from the root of the tree by default. In the procedure after the first 1’s insertion,
depending on the d value F may be set to 1 indicating the search path through sequential pointers of leaf nodes.

 3.3.1 Insertion
The algorithm for signature insertion is outlined in this section.
Insert (Su)
Input : The signature to insert Su ;

1. Move the set bit positions of Su in a queue.
2. For each value i in queue do
 Begin
 Access leaf node i;
 Write the sig. no. with the prefix;
 End.

3.3.2 Searching
The following algorithm outlines the steps to search for signatures matching a given query signature Sq. In the
procedure F ← 0 always and the algorithm lands up directly in the signature node corresponding to last 1 from root.
Search(Sq)
Input : The (query) signature to search.
Output : The list of signatures matching the given signature.

1 Let i be the last set bit of Sq.
2 Access leaf node i.
3 Compare the prefix of Sq.
4 If Found() then read and output the list of signatures.
5 Else report “ no matching signatures”.

3.3.3 Deletion
The algorithm to delete a signature from SD-tree is described below.
Delete (Su)
Input: Su, the signature to delete.

1. Let i1, i2, ….. in be the positions of 1 in Su.
2. For each ik (1 ≤ k ≤ n) form prefix B as in Insert (Su).
3. Access the leaf node and follow the signature node;
4. Access prefix B and search for u.
5. If present, delete it.
6. Repeat steps (2) through (5) for all iks.

 2

 6

 1 2

2 4 0 1

1 4

 10 2

3 4

Root
node

Internal
node

Leaf node

Signature node

 5

On the whole SD-tree maintenance is very simple because insertions and deletions are reflected only in signature
nodes. Further by varying the order of the tree p, the tree height can be made minimal. This results in shorter tree
suitable for fast query processing regardless of the size of the signature file.

 4. QUERY ALGORITHMS
The following section explains the algorithms for processing subset-superset queries using SD-tree.

4.1 ALGORITHM SUBSET
Subset query processing search for all signatures whose set bit positions match with that of query signature. In SD-tree
based retrieval the output is the common elements of all signature nodes at the set bit positions of query signature. The
steps are as follows.

1. Let Sq be the given query to search for.
2. Let i1 , i2, … in be the positions of set bits in Sq.
3. Move i1 , i2, … in into a queue. Let j = 1.
4. While queue not empty do
 Begin
 Read ix from queue.
 Access leaf node ix ->sig.node;
 Let Sj = Set of all sig. no.s in the sig. node;
 j = j+1;
 End.
5. Result = S1 ∩ S2 ….∩ Sn.
6. {Result} has all signatures matching Sq.

4.2 ALGORITHM SUPERSET
Superset query contains the maximum number of set bits to search. Hence, the algorithm finds all signatures whose set
bits form subsets of the query. The steps in the algorithm are given below.

 1. Let Sq be the query signature.
 2. Let n be the number of attributes superimposed to
 form Sq .
 3. Move all possible subsets (2n -1) (superimposed
 signatures of attribute combinations except null
 set) into the queue. Let i = 1;
 4. While queue not empty do
 Begin
 Read signature x from queue;
 Access sig. node of last set bit and let Sn be the
 nth prefix in signature node compared with Sq.
 While x->sig.node not empty do
 Begin
 If Sq.prefix ∩ Sn.prefix = = Sq.prefix then
 Si = Set of sig. no.s pointed by Sn.
 i = i+1;
 End.

5. Result = S1 ∩ S2 ….∩ Sn.
6. {Result} has all signatures matching Sq.

4.3 EXAMPLE:
 For the schema depicted in Fig 1 sample signatures and query evaluation is given below.

Query 1 : List of programmes offering atleast Comp-applns and Applied Maths in Courses
 Query element Signature
 Comp.applns 0010 1000
 Applied Maths 1000 0001
 Query signature 1010 1001

Class : Programme
Pgm-name Courses Object

signature
Output

1. M.E Comp.applns, Applied Maths 1011 1101 Actual drop
2.M.Sc(S.E) Software engg, Comp. engg 1100 1101 Does not match
3.M.Sc(Phy) Comp.applns,Nuclear physics 0111 1000 Does not match

 6

Consider now a query on class programme with set-value 1. For example “course = Comp.applns”
(0010 1000) the output is objects 1 and 3 are actual drops and object 2 does not match.

Query 2 : All instructors handling none other than Applied Maths and Calculus

 Query element Signature
 Applied Maths 1000 0001
 Calculus 0010 0100
 Query signature 1010 0101

Class : Instructor
Inst-name Dept-name Courses Object signature Output
1. John Comp.sc Software engg,

Comp. applns
1110 1011 Does not match

2.Adams Mathematics Applied Maths,
calculus

1010 1101 Actual drop

3. James Comp.sc Software engg 0100 1001 Does not match
4. Janes Physics Nuclear physics 0111 0010 Does not tmatch

For superset single valued set query like “none other than Software engg” (0100 0001) object 1 is a false drop, objects
2 and 4 do not match and object 3 is actual drop. Due to the abstraction incurred in forming signatures the false drop
occurs for lower set cardinality. For higher cardinal values false drop ratio drops considerably.

5. PERFORMANCE ANALYSIS
The performance measures used in signature-based methods are different- some methods use the number of disk
accesses while others use signature reduction ratio to speed up the retrieval time [3]. In this section we show the
benefits obtained by using SD-tree over Signature tree in 5.1. Then in 5.2 we discuss the time and space complexity of
SD-tree-based-retrieval for subset-superset queries.

5.1 SIGNATURE TREE VERSUS SD-TREE
In this section the parameters which are generally considered in the analysis of indexing structures like time and space
complexities are reported. We compare the results of Signature tree [18] with that of the SD-tree. The observed results
are listed in Table 1.

Parameter Signature
tree SD-tree Improvement

Time
complexity O(nF) O(nm) m < F

Shorter tree

Tree height O(log2 n) O(log p (F/(p-1)) p>2 ; Shorter tree

Search cost O(λ.log 2 n) O(log p F+a) F < n; Cost< Sig. tree

 Table 1: Signature tree Vs SD-tree
In Table 1,
n - Number of signatures in signature file
F – Length of signature
m - Number of set bits
p – Order of SD-tree
λ – Number of path traversed in query searching
a – Average no. of signatures / signature node

5.2 PERFORMANCE OF SD-TREE-BASED-RETRIEVAL
To run queries we implement SD-tree in Java and for every test run the tree is constructed statically before signature
insertion. The parameters considered in the experiments’ data sets are Signature length (F), and the no. of set-value
attributes considered in the query (s). The experiments were carried out in a standalone system with Intel Pentium IV
processor. The main memory size is 512 MB and the hard disk capacity is 80 GB. We consider abstract data set having
60000 objects fixed for various signature lengths.

 5.2.1 Time Complexity
Like in other signature applications we use the response time as the performance measure. The time complexity of
handling subset queries depend on the average no. of set bits (m) in the query signature. The search time within the
signature node of set bits depend on the average number of entries (a). Hence, the complexity of subset queries is
bounded by O(ma). The number of values in the set is varied from 2 to 4 for signature lengths 8, 12 and 16 and the
values are plotted in Fig 6. In order to improve selectivity of signatures for varying number of attributes in the query,
signature length was varied to keep false drop probability at minimum. It is obvious that the number of values of the
set-attribute considered in the query definitely increase the set bits in the output signature increasing the searching time.

 7

Otherwise the time variations are only approximate as signatures are mere abstraction of original attribute values and
superimposing attribute values further vary the number of set bits in the output object signature.
For superset queries the algorithm considers the subsets of the values of the set-attribute (except null set) that vary from
2 to (s). Obviously the time taken for query searching increases with (s). This is shown in Fig 7. Searching within the
signature node proceeds as in SD-tree but for (2s -1) subset values. It is apparent that the time taken for query searching
increases with the constituent signatures of (s). If w = {subsets of s}, then the time complexity is bounded by O(wa).
This value is substantially less compared to the signature tree search cost that is dependent on the signature file size N.

Subset Query

0

0.05

0.1

8 12 16

Signature length

Ti
m

e
in

 S
ec

2-valued-set

3-valued-set

4-valued-set

Superset Query

0
0.02
0.04
0.06

8 12 16

Signature length

Ti
m

e
in

 S
ec

2-valued-set
3-valued-set

4-valued-set

 Fig 6. Subset Query Fig 7. Superset Query

 Tree maintenance and space overhead

Tree maintenance is same as that of SD-tree [6] which means that the process of handling subset-superset queries is
incorporated in the algorithm steps which do not affect the tree structure. Fig 8 shows the space overhead of SD-tree
measured for various signature weight distributions.

Space overhead

0

500

1000

1500

30% 50% 70%

Sig. wt. distrn

M
em

or
y

(in
 B

yt
es

)

F = 10

F = 20

F = 30

Fig 8. Space overhead of SD-tree

6. Conclusion and future research directions
In this paper we presented a novel way to represent signature file called SD-tree and adapted it to support subset-
superset queries and analyzed the performance for query response time. The contributions were that the proposed
system is a simple and flexible indexing structure to represent signature files. It supports efficient handling of Object-
Oriented inclusive queries on set-valued attributes. The limitation is that there is no way currently to access OIDs from
the structure for handling complex queries. The future work includes implementing the system to run on real and large
OODB and to tailor the structure to handle point and range queries in OODB.

REFERENCES:
1. Bertino E, Kim W, Indexing techniques for queries on nested objects, IEEE TKDE, Vol.1, No.2, 1989,196–214.
2. Christos Faloutsos, Access Methods for Text, ACM Computing surveys, Vol. 17, No. 1, Mar 1985, 49 – 74.
3. Dik Lun Lee, Young Man Kim, Gaurav Patel, Efficient signature file methods for text retrieval, IEEE TKDE , Jun
 1995, Vol.7, No.3, 423-435.
4. Eleni Tousidou, Alex Nanopoulos, Yannis Manolopoulos, Improved Methods for Signature-Tree Construction, The
 Computer Journal, 2000, Vol. 43, No. 4, 301 – 314.
5. Eleni Tousidou, Panayiotis Bozanis, Yannis Manolopoulos, Signature-based structures for objects with set-valued
 attributes, Information Systems, Vol. 27, No. 2, 2002, 93 – 121.
6. I. Elizabeth Shanthi, Y. Izzaz, R. Nadarajan, On the SD-tree construction for optimal signature operations, Proc. of
 ACM COMPUTE , ACM Digital Library (Jan 2008).
7. Hwan-Seung Yong, Sukho Lee, Hyoung-Joo Kim, Applying Signatures for Forward Traversal Query Processing in
 Object-Oriented Databases, Proc. 10th Intl. conf. Data Engg, Feb 1994, 518 – 525.
8. Joseph M. Hellerstein, Avi Pfeffer, The RD-tree: an index structure for sets, Technical Report 1252, University
 of Wisconsin at Madison, 1994.
9. Kemper A, Moerkotte G ,Access support relations: an indexing method for object bases, Inform Sys Vol. 17, No.2,
 1992, 117–146.
10. Kjetil Norvag 1999. Efficient Use of Signatures in Object-Oriented Database Systems, Proc.of Advances in
 Database and Information Systems ADBIS’99 (Sep, 1999).

 8

11. Maier D, Stein J, Indexing in an object-oriented database, Proc. of the IEEE workshop on object-oriented DBMSs,
 Asilomar, CA, September 1986.
12. Manolis Terrovitis, Spyros Passas, Panos Vassiliadis, Timos Sellis, A Combination of Trietrees and Inverted files
 for the Indexing of Setvalued Attributes, Proc. of CIKM 2006, 728-737.
13. Nikos Mamoulis, Efiicient Processing of Joins on Set-valued Attributes Proc. of SIGMOD (Jun 2003) 157-168.
14. Shin, Hakgene, Chang, Jaewoo 1996. A new Signature Scheme for Query Processing in Object-Oriented Database,
 Proc. of COMPSAC ’96 (Aug, 1996) 400-405.
15. Sven Helmer, Guido Moerkotte, Evaluation of main memory join algorithms for joins with subset join predicates,
 Proc. of VLDB 1997,386-395.
16. Sven Helmer, Guido Moerkotte, A performance study of four index structures for set-valued attributes of low-
 cardinality, VLDB journal 12, 2003, 244-261.
17. Wang-chien Lee, Dik L. Lee, Signature File Methods for Indexing Object-Oriented Database Systems, Proc. 2nd
 Intl. Comp. Sc. Conf, Dec 1992, 616 – 622.
18. Yangjun Chen, Yibin Chen, On the Signature Tree Construction and Analysis, IEEE TKDE , Sep 2006, Vol.18,
 No. 9, 1207 – 1224.
19. Yoshiharu Ishiwaka, Hiroyuki Kitagawa, Nobuo Ohbo, Evaluation of Signature Files as Set Access Facilities in
 OODBs, Proc. of ACM SIGMOD 1993, 247 – 256.
20. Xie Z, Han J, Join index hierarchies for supporting efficient navigation in object-oriented databases, VLDB 1994,
 522–533.

