
Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

Data Modeling

 From
Conceptual

Model to
DBMS

All material (c) Sparx Systems
http://www.sparxsystems.com

©Sparx Systems 2011 Page:1

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

Table of Contents

INTRODUCTION..3

MODELING: FROM CONCEPT TO STRUCTURE...3

LEVELS OF ABSTRACTION IN DATA MODELING ..3
1.Conceptual Model..5
2.Logical Model..6
3.Physical Model..7

WORKING WITH DDL SCRIPTS..9
AUTOMATING LOGICAL TO PHYSICAL (MODEL TRANSFORMATIONS)..10
RELATING DATABASE SCHEMAS TO THE MODEL...11

REVERSE ENGINEERING: ‘EVOLVING’ A STRUCTURE..13

Relating to Reverse-Engineered Code..13
Abstracting to Logical Level...13
Comparing New and Old Structures...14

CONCLUSION...14

DBMS DATA TYPES:...15
DIAGRAM REPRESENTATIONS...15
DATA DICTIONARY..16

GLOSSARY..19

©Sparx Systems 2011 Page:2

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

Introduction

Enterprise Architect supports comprehensive functionality for modeling database structures.
This paper covers the core features for data modeling over the full lifecycle of an application.
Initially, we discuss the basic modeling process – that is outlining a conceptual model and
then working through the steps to form a concrete database schema. We will then look at re-
engineering or ‘evolving’ an existing database schema for software version updates or porting
to a new DBMS.

Database modeling can be performed using different notations. The notations Enterprise
Architect supports include; a UML Profile for DDL, Entity Relationship Diagrams (ERD),
IDEF1X and “Information Engineering”. For the purpose of this document we will focus on
the UML profile for DDL, but include examples using the ERD notation.

Modeling: From Concept to Structure

Levels of Abstraction in Data modeling
Development of systems typically involves numerous levels of abstraction. These range from
formal requirements modeling, Use Case modeling through to Class definition etc. Database
modeling traditionally includes a well established three tiered approach:

1. Conceptual Level – this documents the basic entities of a proposed system and
relationships between them

2. Logical Level – this specifies entities and their relationships without
implementation details

3. Physical Level – this defines the database structure for a technology specific
format (a DBMS)

These define the core stages in the design process of a database.

The models at each of the three levels of abstraction correspond to Model Driven Architecture
(MDA) concepts. MDA's Computation Independent Model (CIM), Platform Independent
Model (PIM) and Platform Specific Model (PSM) relate to the Conceptual, Logical and
Physical models respectively. How you can use MDA transformations with data modeling
and DDL generation are covered in more detail below.

©Sparx Systems 2011 Page:3

Note: For a clearer overview on how to use the UML Profile for DDL modeling in
Enterprise Architect, see the Database Modeling in UML paper.

http://www.sparxsystems.com/resources/uml_datamodel.html

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

Figure 1: Flow through the levels of modeling a database.

©Sparx Systems 2011 Page:4

Logical

Physical
MDA
Transforms

DBMS 2

DBMS

DBMS 1

Version 2Version 1

Conceptual

Note: When working with a UML modeling tool there are strong parallels to
defining the Class structure and the Data model. The UML concept of Classes with
Attributes relates directly to Entities and their Attributes at the Conceptual level,
and to Tables containing Fields on the Physical level.

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

Below is a summary of the data modeling aspects addressed at the Conceptual, Logical and
Physical levels. The table also indicates which parts of the model can be derived by an MDA
Transformation from the Logical model to Physical model.

Figure 2: Conceptual, Logical and Physical modeling

1. Conceptual Model
The purpose of a Conceptual model is to simply establish the Entities, their Attributes and
their ‘high-level’ relationships.

When modeling using UML, the Domain Model is used to define the initial structural layout
(later to be used for Classes). Where the Class design is parallel to the data structure design,
it is sensible to use the Domain model as a seed for the Conceptual model.

At the conceptual level there is little detail. The diagrams consist basically of Entities and
their simple relationships. If there are Attributes defined, these are loosely typed (for
example - no length settings), and connectors between Entities do not define relationships to
specific Attributes.

Figure 3 below is an example of a simple Conceptual diagram for an Online Bookstore.

«enti ty»
Account

«enti ty»
Line Item

«enti ty»
Order «enti ty»

Stock Item

«enti ty»
Transaction

«enti ty»
ShoppingBasket1 0..*

0..*

1 1

0..* 1

1..*

1 1..*

0..*
1

1 1..*

Figure 3: Conceptual Model Diagrams using UML to model the Online Bookstore

©Sparx Systems 2011 Page:5

Conceptual Logical Physical MDA
Transform

Entities 
Entity Relations 
Attributes Un-typed
Class Names 
Class Attributes UML

Typed
Class Connectors 
Table Names  
Column Names  
Column Types DBMS Typed 
Primary Keys  

Foreign Keys  
Stored Procedures 
Views 
Triggers &
Constraints



Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

Enterprise Architect supports two different approaches for data models:
• UML Class diagram (DDL)
• Entity Relationship Diagram (ERD)

Using UML Class modeling, the Conceptual model consists of defining the data entities as an
Element of type “Class”. These Classes can later include internal Attributes, whereas with
ERD based modeling Attributes are defined as related Elements (the Attributes are external
to the Entities).

Figure 4 shows the Online Bookstore Conceptual model in ERD notation.

L ineItemAccoun t

Orde r

Shopp ingBasket

StockItemT ran saction

0 ..*1

0 ..*

11

0..* 1

0 ..*

1 ..*1

0 ..*1

1 ..*

1

Figure 4: Conceptual model using ERD to model Online Bookstore

2. Logical Model
The Logical model includes more detail, specifically Attributes, but the modeling is still
generic as it is not bound to a specific DBMS. The process of creating a Logical model based
on a Conceptual model involves:

- Setting the Attributes
At the Logical level, the attributes (which later become Table Columns), are modeled
independently of any DBMS product. They are typed using primitive UML data types,
such as integer, boolean and string.").

- Setting the Relationships
At the Logical level we do not yet set the Primary Keys & Foreign Keys etc. At this level
it is best to verify and adjust the Connector ‘multiplicity’ (also known as ‘cardinality’ in
database terminology) details that were set earlier for relationships in the Conceptual
model.

Figure 5 is a diagram of the Logical model derived from the Conceptual model in Figure 3.

©Sparx Systems 2011 Page:6

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

Order

+ da te :date
+ de l iveryInstructions :string
+ orderNum ber :in teger
+ status :in tegerAccount

+ b i l l ingAddress :string
+ del iveryAddress :string
+ em ai lAddress :string
+ nam e :string

LineItem

+ quanti ty :in teger

ShoppingBasket

+ shoppingBasketNum ber :string

StockItem

+ author :string
+ cata logNum ber :char
+ costPrice :num ber
+ l istPrice :num ber
+ ti tle :string

Transaction

+ date :date
+ am ountPaid :in teger

1
0..1

1
+basket

0..*

+history 0 ..*

+account 1 +account

1

0..*

1

1 ..*

1

1..*

1

0..*

Figure 5: Logical model of the Online Bookstore using UML

Figure 6 shows an equivalent model of the Account and Transaction elements using an Entity
Relationship Diagrams (ERD). The Entities do not contain attributes, rather the ‘table-
columns’ are represented as ellipses connected to the Entity. The Entity relationships are
represented as diamond-shape connectors.

Account

nam e

bi l l i ngAddress

em ai lAddress

closed

del iveryAddress

T ransaction

date orde rNum ber

1 0 ..*

Figure 6: Logical diagram using ERD (for account & transaction)

3. Physical Model
Modeling on the Physical level involves adding “platform specific” detail to the model. That
is, detail specific to the DBMS where the database is to be deployed. For more detail on
manually setting the definition of the Physical database model using DDL diagramming see
the paper on Database Modeling in UML.

©Sparx Systems 2011 Page:7

http://www.sparxsystems.com/resources/uml_datamodel.html

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

To set up the Physical model you can create a copy of the Logical Model and start the
process of adding the Physical definitions to this model.
The key aspects of this are:

- For each ‘Class’:
o The Stereotype must be set to ‘Table’.
o The Database setting must be set to a specific DBMS. For more information

see: Working with Tables.
o Update the Attributes to reflect Columns ‘Typed’ to the specific DBMS

Field types. For more information see: Create Columns.
- Add more detail to the Connectors (relationships), to define the Primary Key (&

Foreign Key) linking. For more information see: Database Key.

Figure 7 shows the Physical model derived from the above Logical model for a specific
DBMS. It uses the UML Profile for DDL modeling to represent MySQL specific details:

Account

«co lum n»
 b i l l ingA dd ress :VARCHAR(50)
 de l iveryAddress :VARCHAR(50)
 em ai lAdd ress :VARCHAR(50)
 nam e :VARCHAR(50)
*PK accoun tID :INT EGER

«P K»
+ PK_Account(INT EG ER)

LineItem

«co lum n»
 quan tity :INT EGER
*PK l ineItem ID :INT EGER
*FK orde rID :INT EGER
*FK shoppingBaske tID :INT EGER
 FK stockItem ID :INT EGER

«PK»
+ PK_LineItem (INT EGER)

«FK»
+ FK_LineItem _Order(INT EG ER)
+ FK_LineItem _ShoppingB asket(INT EGER)
+ FK_LineItem _StockItem (INT EGER)

Order

«colum n»
 da te :DAT E
 de l iveryInstructions :V ARCHAR(50)
 orderNum ber :INT EGER
 sta tus :OrderStatus
 FK account :INT EGER
*PK orderID :INT EGER
 FK transactionID :INT EGER

«PK»
+ PK_Order(INT EG ER)

«FK»
+ FK_account(INT EGER)
+ FK_Order_T ransaction(INT EG ER)

ShoppingBasket

«co lum n»
 shoppingBasketNum ber :VARCHAR(50)
*PK shoppingBasketID :INT EGER
 FK accoun tID :INT EGER

«PK»
+ PK_ShoppingBaske t(INT EGER)

«FK»
+ FK_ShoppingB asket_A ccount(INT EG ER)

StockItem

«colum n»
 au thor :VARCHA R(50)
 ca ta logNum ber :CHAR(10)
 costPri ce :num ber
 l i stP rice :num ber
 ti tl e :VARCHAR(50)
*P K stockItem ID :INT EGER

«PK»
+ PK_StockItem (INT EG ER)

Transaction

«colum n»
 date :DAT E
 am oun tPa id :INT EGER
*PK transactionID :INT EGER
 FK account :INT EGER

«PK»
+ PK _T ransaction(INT EGER)

«FK»
+ FK_account(INT EGER)

+FK _Order_T ransaction
0..*

(transaction ID = transaction ID)

«FK»

+PK_T ransaction

1

+FK_L ineItem _StockItem

0..1

(stockItem ID = stockItem ID)

«FK»

+PK_StockItem 1

+FK_LineItem _Shopp ingBasket

1 ..*

(shopp ingBasketID = shopp ingBasketID)

«FK»

+PK_Shopp ingBaske t

1

+FK_Line Item _Order

1..*

(orderID = orderID)

«FK»

+PK_Orde r1

+FK_Shopp ingBasket_Accoun t

0 ..*

(accountID = accoun tID)

«FK»

+PK_Accoun t

1

+FK _account 0 ..*

(account = accountID)

«FK»

+P K_Account 1 +FK_account 0 ..*

(account = accountID)

«FK»

+P K_Account

1

Figure 7: Physical level model set to a specific DBMS.

Further details can be added to the derived physical model. These include setting:
- Stored Procedures: see Stored Procedures
- Views: see - Views

©Sparx Systems 2011 Page:8

Note: All of the above Physical level additions and alterations can be
automated using an MDA transformation from a Logical model. See
‘Automating Logical to Physical (MDA transforms)’ below.

http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/views.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/storedprocedures.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/database_keys.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/createcolumns.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/edit_table_properties.html

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

- Constraints, Triggers: see – Indexes, Triggers and Check Constraints.

Working with DDL Scripts

The final step is to generate the SQL script that will be ready to load into the DBMS.
For more details on this see: Generate DDL.
These scripts can also be imported back into Enterprise Architect and edited with SQL syntax
highlighting in the Code Viewer.

The SQL script can be generated for the whole package or for single tables. If a single script
for the package (a complete database) has been generated, the script file can be imported back
to the Package. Otherwise for single table scripts, you can import these back to each Table
Element.

To import the script, select either the package or the table-element, then in the Properties view
– under Filename - import the generated script (see the Properties view, bottom right, in the
image below).

To Edit or View the script, open the Source Code editor (Alt+7), then select the package or
table-Element.

Figure 8: Database model with the DDL script for the table selected in the diagram

©Sparx Systems 2011 Page:9

Note: These three features are outside the MDA transform covered in the
section below: Automating Logical to Physical (Model Transformations).

http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/ddl_generation.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/check_constraints.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/triggers.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/indexes.html

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

Automating Logical to Physical (Model Transformations)
Model Driven Architecture (MDA) transformations can automate the generation of lower
level models from a higher level of abstraction.

For database modeling, MDA transformations take a DBMS independent Logical Data Model
as input and generate a corresponding Physical model (DBMS specific).

Enterprise Architect supports the following MDA transformations for database modeling:
- UML Classes to DBMS specific DDL tables.

For more information, see the DDL Transforms help topic.

- ERD Elements to DBMS specific DDL Tables.
For more information, see the ERD Transformation help topic.

There is also support for a reverse transform from DDL to ERD. For more details on this, see
below: Data Model to ERD Transformation

A point to note is, that where there are ‘many-to-many’ relationships in the logical model, the
DDL transformation generates a join-table to accommodate the relationship.

Returning to the Online Bookstore example (see Figure 5), we could re-model "StockItem" as
two separate tables, Publication and Author, related using a many-to-many UML Association.
This is shown as:

Author

- a u tho rNa m e

Publication

- ti t le :S trin g
- ca ta log Nu m b er :Strin g
- costPrice :In teg e r
- l i stPri ce :In teg e r

1 ..* 1 ..*

Figure 9: ‘Stockitem’ redefined in the logical model as Author and Publication with a
many-to-many relationship.

Applying the MDA DDL transformation to this logical model returns:

©Sparx Systems 2011 Page:10

Note: the Enterprise Architect default DBMS needs to be set for the Logical
Model to be transformed to a specific DBMS. To set the DBMS default, see
help: DBMS Datatypes

http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/model_transformation/data_model_to_erd.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/data_types.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/model_transformation/erd_to_data_modeling.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/model_transformation/ddltransformation.html

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

Author

«colum n»
 authorNam e
*PK authorID :INT EGER

«PK»
+ PK_Author(INT EGER)

JoinAuthorToPublication

«colum n»
 FK publ icationID :INT EGER
 FK authorID :INT EGER

«FK»
+ Publ ication(INT EGER)
+ Author(INT EGER)

Publication

«colum n»
 ti tle :VARCHAR(50)
 cata logNum ber :VARCHAR(50)
 costPrice :INT EGER
 l istPrice :INT EGER
*PK publ icationID :INT EGER

«PK»
+ PK_Pub l i cation(INT EGER)

+Publ ication
1..*

(publ i cation ID = publ ica tionID)

«FK»

+PK_Publ i cation

+Author
1..*

(authorID = authorID)

«FK»

+PK_Author

Figure 10: MDA Transformation of a many-to-many logical relation.

Relating Database Schemas to the Model
When modeling on different levels of abstraction, there is often a need for traceability
between the equivalent entities across each level of abstraction (Conceptual, Logical and
Physical), as well as, traceability between Table Fields and their associated application logic
(Class Attributes) and User Interface diagrams.

There are a number of methods that can be used for this process:

1. When relating elements across levels of abstraction Enterprise Architect’s
Relationship Matrix can be used to create or view links between entities, on their
different levels.
The Traceability View can also be used to view relationships between
entities/elements from a hierarchical perspective.

2. Table-fields can be directly related to Class Attributes using Connect to Element
Feature. Below is a simple example of this type of mapping in a diagram.

©Sparx Systems 2011 Page:11

http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/modeling_basics/connect_to_element_feature.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/modeling_basics/connect_to_element_feature.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/navigate_search_and_trace/hierarchy.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/navigate_search_and_trace/elementrelationshipmatrix.html

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

C# Model::Account

 nam e :string
 b i l l i ngAddress :string
 em ai lAddress :string
 closed :bool
 del i veryAddress :string

+ loadAccountDeta i ls(string) :void
+ m arkAccountClosed() :void
+ createNewAccount() :vo id
+ subm itNewAccountDetai ls() :vo id
+ retrieveAccountDetai l s() :void
+ va l idateUser(string, string)

«property»
+ Order() :Order
+ baske t() :ShoppingBasket
+ nam e() :string
+ b i l l i ngAddress() :string
+ em ai lAddress() :string
+ closed() :bool
+ del i veryAddress() :string

Physical Model::Account

«colum n»
 nam e :VARCHAR(50)
 b i l l ingAddress :VARCHAR(50)
 em ai lAddress :VARCHAR(50)
 closed :BIT
 del iveryAddress :VARCHAR(50)
*PK accountID :INT EGER
*FK history :INT EGER

«PK»
+ PK_Account(INT EGER)

«unique»
+ UQ_Account_accountID(INT EGER)
+ UQ_Account_closed(BIT)

«FK»
+ FK_history(INT EGER)

Figure 11: Directly linking Class Attributes to Table Fields

3. Some database systems relate explicit Screen entry Fields direct to Table Fields (.e.g.
MS Access, PowerBuilder etc.). To model these relationships a Screen Model can be
linked using the Connect to Element Feature connections as shown below.

StockItem

Author T i tle

CostPrice ListPrice

QuantityCata logNum ber

Next

SearchAuthor
StockItem

«colum n»
 Author :varchar(50)
 cata logNum ber :varchar(50)
 costPrice :num ber
 l i stPrice :num ber
 ti tle :varchar(50)
*PK stockItem ID :in teger
 FK l ineItem ID :integer

«PK»
+ PK_StockItem (integer)

«FK»
+ FK_StockItem _Line Item (integer) Back New Save

FindSerachT itle

Figure 12: Associating table fields to screen controls

©Sparx Systems 2011 Page:12

http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/modeling_basics/connect_to_element_feature.html

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

Reverse Engineering: ‘Evolving’ a Structure
A major version change of a system can involve core structural modifications. These could
include changes resulting from different database structures, through to a different data
storage solution (another DBMS).

When modeling changes to a database structure, you must view the current schema in a
model. Where the model repository has not been maintained over the lifecycle of system
changes, you need to re-import the schema back into Enterprise Architect. For details on the
process to Reverse Engineer a DBMS see Import Database Schema .

Once the legacy schema is available in the model it can then be manipulated in a number of
ways, such as simply converting it to another DBMS format, relating it to reverse-engineered
application classes or further abstracting it to form a Platform Independent model.

The options available are:

Convert to another DBMS (Migration)
In cases where the primary change is from one DBMS to another DBMS, a
simple process that Enterprise Architect supports is Data Type Conversion for
a Package. This supports a direct conversion from one DBMS to another (e.g.
MS SQL Server to Oracle).

Post conversion, the structure can be modified to meet any alterations to the
design. The updated data model can then used to generate the schema as a
DDL script and then loaded into the new DBMS to create a new database. See:
Generate DDL.

Relating to Reverse-Engineered Code
For an overview of the options for relating the reverse engineered database structure
to the reverse engineered code see: Relating Data schemas to the Model outlined
above.

Abstracting to Logical Level
Reverse Engineering the database schema will create a Physical DDL model. Where
there needs to be more work on the design, and in cases where the code has also been
reverse engineered, and the Class structures of the application model are being
altered, there may be a need to work on a data modeling at a higher level of
abstraction - the Logical model.

Where the original data model used to develop the legacy version is still available,
then the Logical data model can be re-used as a starter and updated. Although an
MDA transformation from the Physical data model to the Logical data model is not
supported, if the code structure is a close reflection of the data schema, then a logical
model can be derived by reverse engineering the code and then this Class diagram
can be used as a foundation for defining the Database logical structure.

©Sparx Systems 2011 Page:13

http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/ddl_generation.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/dbmspackagedatabasemapper.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/dbmspackagedatabasemapper.html
http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/importdatabaseschemafromod.html

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

Comparing New and Old Structures
A function that can be of great use when reverse engineering a database
schema, then modifying the model, is to compare the new modeled structure
against the existing database schema stored on the DBMS. For more details on
this see ‘Compare DDL for a Database’ in Generate DDL for a Package.

Conclusion
This covers some of the key features of Enterprise Architect’s support for Data
Modeling including modeling from the Conceptual to Physical levels, Forward and
Reverse Engineering of Database Schemas, and MDA transformation of the Logical
model (platform independent) to Physical DBMS (platform dependant schema).
When modeling an application and the database in the same environment there is
added benefit of traceability between the application modeling and the data modeling;
synchronization between the design of the application, the design of the data model
and the final implementation of these, along with, the added benefits of model reuse
when starting new designs.

Whether you need to model and manage complex designs and visualize data
structures, or build and deploy diverse data systems, Enterprise Architect provides
interconnected modeling, development and deployment, for both the database and the
system code.

©Sparx Systems 2011 Page:14

http://www.sparxsystems.com/enterprise_architect_user_guide/9.0/database_engineering/generateddlforapackage.html

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

Appendix:

DBMS data types:
There may be cases where you want to create a physical data model for a DBMS product that
is not yet supported natively by Enterprise Architect, or you may need to add datatypes for a
more recent version of a supported DBMS. The Database Datatypes screen allows adding a
new Database product, or customizing the data-types associated with an existing one.

To do this, select from the main menu: Settings | Database Datatypes. See the related help
topic for more details.

Diagram Representations
Enterprise Architect supports a number of notations relevant to data modeling. This
document primarily uses Class diagrams. Other supported notations include:

- IDEF1X

- ERD

- Information Engineering

The following are examples of the IDEF1X and Information Engineering formats:

Order

+ date :date
+ del iveryInstructions :string
+ orderNum ber :integer
+ status :integer

Account

+ b i l l ingAddress :string
+ del iveryAddress :string
+ em ai lAddress :string
+ nam e :string

LineItem

+ quanti ty : integer

ShoppingBasket

+ shoppingBasketNum ber :string

StockItem

+ author :string
+ ca talogNum ber :char
+ costPrice :num ber
+ l istPrice :num ber
+ ti tle :string

Transaction

+ date :date
+ am ountPaid :integer

Z

+basket

+history

+account

+account

P

P

Figure 13: IDEF1X representation of the Online Bookstore data model

©Sparx Systems 2011 Page:15

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

Order

+ date :date
+ del iveryInstructions :string
+ orderNum ber :integer
+ status :integer

Account

+ b i l l ingAddress :string
+ del iveryAddress :string
+ em ai lAddress :string
+ nam e :string

LineItem

+ quanti ty : integer

ShoppingBasket

+ shoppingBasketNum ber :string

StockItem

+ author :string
+ ca talogNum ber :char
+ costPrice :num ber
+ l istPrice :num ber
+ ti tle :string

Transaction

+ date :date
+ am ountPaid :integer

+basket

+history

+account

+account

Figure 14: Information Engineering representation of the Online Bookstore data model

To change the format of the diagram between UML Profile for DDL, IDEF1X and
Information Engineering, select from the main menu: Diagram | Properties > Connectors, then
using the dropdown: Connector Notation – select the appropriate format.

Data Dictionary
A simple method to create a data dictionary is to use the Enterprise Architect Model Search
facility to create a ‘Data Dictionary’ query. This returns results that can be sorted by many
different fields (e.g. by Table name, Field Type, Primary Key, Foreign key etc.).

Enterprise Architect supports storing its model repositories using a number of different
DBMS. As the search query format differs between each DBMS, only the simple default .eap
SQL script is shown below. Note this is simple to re-arrange to suite the SQL specific to the
DBMS of your repository.

To create the Model Search query:

1. Use Ctrl+F to open the Model Search view

2. Then select: Options | Manage Searches

3. Select the New Search icon

4. On the Create New Search Query dialog:

o Type in a Name (“Data Dictionary EAP”)

o Select: SQL Editor

The SQL search string to use is:

©Sparx Systems 2011 Page:16

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

SELECT t_attribute.ea_guid AS CLASSGUID, 'Attribute' AS CLASSTYPE,

t_object.Name as Table_Name,

t_attribute.Name,

iif(t_attribute.IsOrdered, "PK", "") as PrimaryKey,

iif(t_attribute.IsCollection, "FK", "") as ForeignKey ,

 t_attribute.Type, t_attribute.Length, t_attribute.Precision, t_attribute.Scale,

iif(t_attribute.IsStatic, "Unique", "") as isUnique,

iif(t_attribute.AllowDuplicates, "NotNull","") as NotNull

FROM t_attribute, t_object
WHERE t_attribute.object_Id = t_object.Object_ID and t_object.Stereotype = "Table"

This will support cross-referencing to the Table Fields in the Project Browser using the
Context menu options in the result set generated (see below):

©Sparx Systems 2011 Page:17

Series: Data Modeling
From Conceptual Model to DBMS

Enterprise Architect
Visual Modeling Platform

http://www.sparxsystems.com

Glossary

Attribute A feature within an Entity that describes where a range of values can
stored.

Conceptual Level The initial design level used to establish the Entities and simple
relationships.

Conceptual Model Models defined at the Conceptual Level.

Database Schema The structure of a database described in a formal language supported by
the database management system (DBMS).

DBMS Database Management System, is a software system that manages
databases on a server.

DDL A Data Definition Language is a language used for defining data
structures.

Entity A uniquely identifiable object abstracted from the complexities of some
domain – fundamental element used in ERD.

ERD Entity-Relationship Diagrams: a classical data modeling notation,
primarily used for conceptual modeling.

IDEF1X “Integration Definition for Information Modeling” is a data modeling
language associated with the IDEF group of modeling languages.

Information
Engineering “Information Engineering” is a database modeling notation for Entity-

Relationship Modeling.

Logical Level This level of abstraction is a simple description of database structure,
and what relationships exist among those data entities.

Logical Model Data Models defined at the logical Level.

MDA Model Driven Architecture (MDA) is a software design approach for
the development of software systems. See OMG - MDA

Physical Level The level where the database schema modeling has sufficient detail to
facilitate implementation on a specific DBMS.

Physical Model Models defined at the Physical Level.

PIM Platform Independent Model – used in MDA transformations.

PSM Platform Specific Model –generated by MDA transformations.

UML Unified Modeling Language: an object modeling and specification
language used in application design. See OMG-UML.

©Sparx Systems 2011 Page:18

	Introduction
	Modeling: From Concept to Structure
	Levels of Abstraction in Data modeling
	1. Conceptual Model
	2. Logical Model
	3. Physical Model

	Working with DDL Scripts
	Automating Logical to Physical (Model Transformations)
	Relating Database Schemas to the Model

	Reverse Engineering: ‘Evolving’ a Structure
	Relating to Reverse-Engineered Code
	Abstracting to Logical Level
	Comparing New and Old Structures

	Conclusion
	DBMS data types:
	Diagram Representations
	Data Dictionary

	Glossary

