
Record Setting Hadoop in the Cloud
By M.C. Srivas, CTO, MapR Technologies

When MapR was invited to provide Hadoop on Google Compute Engine, we ran a lot of mini
tests on the virtualized hardware to figure out how to tune our software. The results of those
tests were surprisingly good. The speed and consistent performance provided by Google
Compute Engine even at the 99th percentile was very impressive. So we decided to run a
TeraSort benchmark just to see how well we could do in a virtualized, shared environment
where we didn't control the hardware, nor control the other non-MapR tenants.

An Earlier Result
We announced our first set of results on June 29, 2012 during Google’s developer conference,
Google I/O on a 1256 instance cluster consisting of n1-standard-4-d Google Compute Engine
nodes. An n1-standard-4-d instance consists of 4 virtual cores, 1 virtual disk, and 1 virtual
Ethernet interface.

The result was a fairly respectable performance of the MapR software, sorting a terabyte in 80
seconds on 1256 virtual instances. Some of the important tuning parameters for that run were:
 - 4 mappers and 2 reducers on each instance
 - HDFS block size = 256M
 - io.sort.mb = 350M
 - 2 copier threads for each reducer (mapred.reduce.parallel.copies = 2)

However, given the awesome performance of Google Compute Engine, we knew we could do
much better. We focused on getting additional performance advantages out of the MapR
platform.

New World Record
We are proud to announce that we were able to run the Hadoop TeraSort benchmark to sort
1TB of data in a world-record setting time of 54 seconds on a 1003-instance cluster that
Google graciously provided for our use. Of the 1003 instance, 998 instance ran the jobs, and 5
instance were used for control (e.g., ran the JobTracker, Zookeeper, and MapR’s AdminServer).
These results represent a 10% improvement on the previous world record, achieved with
approximately a third the number of cores.

 MapR on GCE Previous record Approx. Ratio
elapsed time 54 seconds 62 seconds
#nodes virtual instance 1003 physical 1460 2/3
#cores 4012 11680 1/3
#disks 1003 5840 1/6
#network ports 1003 1460 2/3

This new record is also an improvement of more than 50% over our earlier result. The
configuration for this run was:

 - HDFS block size = 1G
 - 1 mapper and 1 reducer per instance
 - io.sort.mb = 1200M
 - 40 copier threads per reducer

Below are the details of our work. The work will be contributed back to the community. All of the
changes made for this benchmark are rolled into the next release of MapR.

To view the record-breaking TeraSort visit http://youtu.be/XbUPlbYxT8g. A more detailed video
of the TeraSort is available at http://youtu.be/9iQzMoy41_k.

JobTracker Improvements
Initial analysis showed that the JobTracker (the JT) was consuming an inordinate amount of
CPU, well beyond what was proportionate for the load. On an 8-core machine the JT consumed
all 8 cores at 100% busy. And it wasn't due to excessive garbage collection or logging.

So we went at the JobTracker with a scalpel. We eliminated 4 or 5 superfluous threads that
seemed to do nothing much except pass work items around and cause needless lock-
contention. We simplified a bunch of java TreeMaps into java LinkedLists which not only
decreased CPU consumption but also helped in improving the lock management. With a
TreeMap, one needs a global lock on the tree, while with a LinkedList one can separate the
head and tail locks and achieve much higher concurrency. With LinkedList, the locks are also
held for much smaller durations during insert/remove operations. Of course, the functionality in
those spots in the code didn't require a total sorted order so we could get away without a
TreeMap.

There was also a massive memory copy happening inside a global lock; the memory copy
happened on every map-completion event that had to be reported to the task-trackers. That
piece of the code had to be re-written to circumvent the memory copy.

With those changes, the JT was no longer a serious bottleneck, and we were able to run it on a
4-core machine alongside other processes, and the cores remained fairly healthy at ~80% busy.

Task Launch SpeedUp
A major concern Hadoop users have faced for a while is that tasks are not launched until well
after a job is submitted. We added instrumentation to diagnose the JobClient overheads and the
TaskTracker overheads. Many shell-based operations were replaced with JNI calls, in particular
fstat() and chmod/chown on the LocalFileSystem which were invoked on an average of 17 times
at every task launch. The way DNS was queried was cleaned up, reducing the number of calls
to DNS by a substantial number. Another major improvement was fixing the parsing of the
various config files (eg, core-site.xml, mapred-site.xml, log4.properties, ...) which also happened
on every task launch. All these changes resulted in much better responsiveness, and our task
launch time improved by almost 20 times while reducing CPU consumption and network traffic
significantly.

Reducer Scheduling
Once the JobTracker was fixed, the bottleneck shifted to the reducer itself. Each reducer
fetches a list of completed map events from its TaskTracker and fetches the map output for
each event. It schedules a pool of threads to fetch several outputs in parallel
(mapred.reduce.parallel.copies controls the number of threads). Tracing the execution showed
that the threads were not getting scheduled in time, i.e., there were long delays between when
the reducer received the map events and when the fetcher thread actually tried to fetch the data.
Increasing the number of threads had adverse effects, which was opposite of what we'd
expected. In our earlier runs, we couldn't go beyond 6 parallel copiers per reducer without
worsening the performance.

We ended up rewriting this portion of the scheduler inside the reducer. Again, we massively
simplified the data structures, which enabled the locking to get fine-grained. The rewritten code
could easily schedule 1000’s of parallel copies very rapidly.

Network Connection Management
Bumping up the reducer copier-threads caused an unexpected problem in our system. We’d
started with our earlier config of 2 reducers per instance (2000 reducers in total) with each
reducer spawning 100 threads to copy. That's 200,000 simultaneous copy requests flying
through the system. Each reducer was talking to a new instance for the first time, and a new
socket connection had to be made for each fetch. We saw spikes of about 1000-2000
simultaneous connect requests arriving instantly at each server. But many of these connect
requests would fail with ECONNREFUSED, even though the receiving server was working just
fine. It had us stumped for a while. We spent quite some time debugging our RPC system to
see if we were overflowing any data structures. Finally we figured out that it was the kernel
dropping these TCP connect requests on the floor as its internal queues got full. Increasing the
listen backlog inside the kernel eliminated the connection failures.

 echo 3000 > /proc/sys/net/core/netdev_max_backlog

With the above changes, the reducers were running smoothly fetching map outputs at upwards
of 100MB/s from each instance. The bottleneck shifted to the mappers.

Mapper Sorting
Internal buffering inside the MapR client software caused an interesting bottleneck. When the
output for one partition is ready, the MapR mapper writes it out into an independent file (similar
to what existed in Hadoop 0.15.x). But the data is not written out and accumulates in an internal
buffer until either the buffer overflows or the file is closed. When the buffer overflows the data is
transmitted to the server asynchronously. But if the data is small enough, the buffer will never
overflow and it is the close call that finally pushes it out -- but now it is synchronous rather than
asynchronous. It effectively made partition sorting proceed sequentially with the data transfer
instead of in parallel. We fixed this by sorting partitions in parallel which improved the map
elapsed time by 30%. (see map

Final Run
The changes gave us consistent and stable runs of the TeraSort benchmark, all of which
completed under 1 minute. The runs, including the many that produced the 54-second record,
were achieved with 457 fewer nodes, with approximately 1/3rd the number of cores and 1/6th
the number of disks, and approximately 40% fewer network ports. Here’s a report for one of the
several runs that broke the record and came in at 54 seconds:

Hadoop Job job_201210181210_0063 on History Viewer
User: yufeldman
JobName: TeraSort
JobConf:
maprfs:/var/mapr/cluster/mapred/jobTracker/staging/yufeldman/.staging/job_201210181210_00
63/job.xml
Job-ACLs: All users are allowed
Submitted At: 18-Oct-2012 22:16:57
Launched At: 18-Oct-2012 22:16:58 (0sec)
Finished At: 18-Oct-2012 22:17:52 (54sec)
Status: SUCCESS
Analyze This Job

Kind Total

Tasks(successful+failed+killed)
Successful
tasks

Failed
tasks

Killed
tasks

Start Time Finish Time

Setup 0 0 0 0
Map 998 998 0 0 18-Oct-2012

22:16:59
18-Oct-2012 22:17:30
(30sec)

Reduce 998 998 0 0 18-Oct-2012
22:16:59

18-Oct-2012 22:17:52
(53sec)

Cleanup 0 0 0 0

 Counter Map Reduce Total

Job Counters Aggregate execution time of mappers(ms) 0 0 21,346,738

 Launched reduce tasks 0 0 998

 Total time spent by all reduces waiting after
reserving slots (ms)

0 0 0

 Total time spent by all maps waiting after
reserving slots (ms)

0 0 0

 Launched map tasks 0 0 998

 Data-local map tasks 0 0 998

 Aggregate execution time of reducers(ms) 0 0 46,491,572

FileSystemCounters MAPRFS_BYTES_READ 1,000,000,079,840 1,020,017,928,072 2,020,018,007,912

 MAPRFS_BYTES_WRITTEN 1,020,021,918,260 1,000,000,008,052 2,020,021,926,312

 FILE_BYTES_READ 27,253,384 0 27,253,384

 FILE_BYTES_WRITTEN 23,425,419 23,343,583 46,769,002

Map-Reduce
Framework

Map input records 10,000,000,000 0 10,000,000,000

 Reduce shuffle bytes 0 1,020,001,835,004 1,020,001,835,004

 Spilled Records 10,000,000,000 0 10,000,000,000

 Map output bytes 1,000,000,000,000 0 1,000,000,000,000

 CPU_MILLISECONDS 43,375,890 27,495,970 70,871,860

 Map input bytes 1,000,000,000,000 0 1,000,000,000,000

 Combine input records 0 0 0

 SPLIT_RAW_BYTES 79,840 0 79,840

 Reduce input records 0 10,000,000,000 10,000,000,000

 Reduce input groups 0 9,470,398,842 9,470,398,842

 Combine output records 0 0 0

 PHYSICAL_MEMORY_BYTES 1,234,250,928,128 1,455,579,328,512 2,689,830,256,640

 Reduce output records 0 10,000,000,000 10,000,000,000

 VIRTUAL_MEMORY_BYTES 2,924,949,504,000 6,105,965,477,888 9,030,914,981,888

 Map output records 10,000,000,000 0 10,000,000,000

 GC time elapsed (ms) 215,098 1,239,858 1,454,956

All of the changes that enabled the record have already been rolled into the next release of
MapR. The software was installed "as is", with only a few config changes that this blog publicly
discloses above (we include the job.xml file that describes the entire configuration). All the
monitoring, health checks, and HA features of MapR were on, and we even increased our GUI
refresh rate by 15X to see the results continuously. (the GUI displays a variety of statistics on
each node, so it has to fetch about a 100 variables per node from those 1000 nodes every
second). The MapR software logs over 70 variables every 10 seconds on each node for
diagnostic purposes. All of this was enabled and not turned off during the performance runs.

We would like to thank Google for their continued support of this effort. It would not be possible
to do this without the Google engineers providing us with a very stable and fast environment,
and responding promptly to questions we had.

MapR’s MapReduce Team
Yuliya Feldman, Amit Hadke, Gera Shegalov, Subhash Gopinath, Prasad Bodupalli, M. C.
Srivas

Appendix

Job Configuration: JobId - job_201210181210_0063
name value
mapred.queue.default.acl-administer-jobs *
mapred.tasktracker.ephemeral.tasks.timeout 10000
mapred.fairscheduler.smalljob.max.maps 10
mapred.input.dir /t.in/gen
mapred.cache.files.timestamps 1350598616866
mapred.fairscheduler.smalljob.max.reducers 10
mapred.working.dir /user/yufeldman
mapreduce.job.submithost m05-perfdemo.c.mapr-demo.maprtech.com.internal
mapreduce.heartbeat.100 500
mapreduce.jobtracker.recovery.maxtime 480
mapreduce.input.num.files 998
mapred.jobtracker.retiredjobs.cache.size 1000
mapred.job.shuffle.merge.percent 1.0
mapred.maxthreads.closer.threadsnumber 4
fs.s3.blockSize 33554432
keep.failed.task.files false
mapred.output.value.class org.apache.hadoop.io.Text
mapreduce.tasktracker.task.slowlaunch false
mapred.map.child.java.opts -Xmx2000m
mapred.jobtracker.restart.recover true
mapred.cache.files.filesizes 27308
mapred.tasktracker.ephemeral.tasks.maximum 1
mapred.job.tracker.history.completed.location /var/mapr/cluster/mapred/jobTracker/history/done
user.name yufeldman
mapred.cache.files maprfs:/t.in/gen/_partition.lst#_partition.lst
mapred.output.dir maprfs:/t.out/sort
mapred.reducetask.memory.default 1500
mapreduce.job.dir maprfs:/var/mapr/cluster/mapred/jobTracker/staging/yufeldman/.staging/job_

201210181210_0063
mapred.cluster.ephemeral.tasks.memory.limit.mb 200
mapred.reduce.parallel.copies 40

fs.maprfs.impl com.mapr.fs.MapRFileSystem
group.name yufeldman
mapred.job.reduce.input.buffer.percent 0.75
mapred.job.name TeraSort
mapreduce.tasktracker.reserved.physicalmemory.mb.low 0.80
mapred.tasktracker.ephemeral.tasks.ulimit 4294967296>
fs.mapr.working.dir /user/yufeldman
mapreduce.jobtracker.staging.root.dir /var/mapr/cluster/mapred/jobTracker/staging
fs.file.impl org.apache.hadoop.fs.LocalFileSystem
mapred.fairscheduler.eventlog.enabled false
mapred.job.tracker.persist.jobstatus.dir /var/mapr/cluster/mapred/jobTracker/jobsInfo
io.sort.record.percent 0.17
mapred.reduce.tasks.speculative.execution false
mapred.jobtracker.port 9001
mapred.jobtracker.taskScheduler org.apache.hadoop.mapred.JobQueueTaskScheduler
mapreduce.heartbeat.10000 500
mapred.map.tasks 998
fs.default.name maprfs:///
mapred.output.key.class org.apache.hadoop.io.Text
mapred.jobtracker.jobhistory.lru.cache.size 5
mapred.reduce.tasks 998
mapreduce.heartbeat.10 500
mapred.maptask.memory.default 800
io.file.buffer.size 8192
mapreduce.tasktracker.jvm.idle.time 10000
fs.s3n.blockSize 33554432
mapred.tasktracker.map.tasks.maximum 1
mapred.fairscheduler.smalljob.schedule.enable false
mapred.fairscheduler.smalljob.max.reducer.inputsize 1073741824
fs.s3.block.size 33554432
mapred.job.reuse.jvm.num.tasks -1
mapred.jar /var/mapr/cluster/mapred/jobTracker/staging/yufeldman/.staging/job_201210

181210_0063/job.jar
mapred.tasktracker.task-controller.config.overwrite true
mapred.tasktracker.reduce.tasks.maximum 1
mapreduce.tasktracker.prefetch.maptasks 0.0
mapred.job.shuffle.input.buffer.percent 0.7
fs.mapr.rpc.timeout 120
mapreduce.cluster.map.userlog.retain-size -1
mapred.partitioner.class org.apache.hadoop.examples.terasort.TeraSort$TotalOrderPartitioner
mapred.job.tracker maprfs:///
mapred.maxthreads.generate.mapoutput 5
mapreduce.tasktracker.heapbased.memory.management false

mapreduce.heartbeat.1000 500
fs.s3n.block.size 33554432
mapred.committer.job.setup.cleanup.needed false
io.sort.mb 1200
mapreduce.jobtracker.node.labels.monitor.interval 120000
mapreduce.tasktracker.outofband.heartbeat true
mapred.local.dir /tmp/mapr-hadoop/mapred/local
mapreduce.tasktracker.group mapr
io.sort.factor 256
mapred.create.symlink yes
mapred.used.genericoptionsparser true
mapreduce.maprfs.use.compression true
webinterface.private.actions true
mapred.fairscheduler.smalljob.max.inputsize 10737418240
hadoop.proxyuser.root.groups root
mapreduce.task.classpath.user.precedence false
mapred.system.dir /var/mapr/cluster/mapred/jobTracker/system
mapred.input.format.class org.apache.hadoop.examples.terasort.TeraInputFormat
mapreduce.cluster.reduce.userlog.retain-size -1
mapred.map.tasks.speculative.execution true
mapred.fairscheduler.assignmultiple true
mapreduce.jobtracker.split.metainfo.maxsize 10000000
mapred.inmem.merge.threshold 5000000
terasort.final.sync true
hadoop.proxyuser.root.hosts *
mapreduce.jobtracker.recovery.dir /var/mapr/cluster/mapred/jobTracker/recovery
mapred.task.tracker.task-controller org.apache.hadoop.mapred.LinuxTaskController
mapred.reduce.child.java.opts -Xmx5000m
mapred.reduce.slowstart.completed.maps 0.0
mapred.output.format.class org.apache.hadoop.examples.terasort.TeraOutputFormat
mapreduce.job.cache.files.visibilities true
mapreduce.reduce.input.limit -1
mapreduce.job.submithostaddress 10.240.107.75
mapred.tasktracker.taskmemorymanager.killtask.maxRSS false

MapR Technologies, 2012.

