

 1

Design Patterns for Relational Databases

Eugenia Stathopoulou, Panos Vassiliadis

University of Ioannina,

Dept. of Computer Science,

Ioannina, Hellas

{jenny_stathopoulou@hotmail.com, pvassil@cs.uoi.gr}

1 Introduction

A design artifact at the logical level comprises abstract mathematical symbol

structures to hide implementation details from the designer [Kolp01, Mylo98].

Logical models are the bridge between the requirements-oriented, subjective, highly

intuitive conceptual models and the concrete, physical-level models that represent the

way things are actually implemented in the system. This property provides a

reasonable compromise between formality, intuition and implementation and makes

the logical models the fundamental blueprints of the software architecture of an

information system. In the world of databases, the fundamental design artifacts at the

logical level are the database schemata. A database schema is the platform over which

(a) applications are developed and (b) tuning of the physical structure of the database

is performed. In other words, logical schemata are the most important design artifact

for the full lifecycle of a database-centric information system.

Why patterns? Patterns constitute a principled way of teaching, designing and

documenting software systems [GHJV95]. Moreover, patterns allow us to evaluate the

quality of a design by measuring the compliance of a logical schema to a set of

underlying patterns. Given a well-founded theory of database patterns, the less

deviations a schema has from the theory, the less is the risk of maintenance traps,

since the improvisations that a designer makes are minimized.

In this paper, we provide a discussion of a template structure for database-related

patterns. We make the following assumptions:

(i) we are primarily interested in patterns concerning relational databases (on top

of which, object-relational or other structures can be applied), and,

 2

(ii) we view the problems of database design from the perspective of maintenance

and evolution (as opposed to other viewpoints, like, for example,

performance).

In the next section, we provide a template pattern structure. Then, we discuss three

design problems along with their respective patterns, specifically, pivoting,

materialization and generalization.

2 Template Pattern Structure

Why do we organize database design in patterns? What fundamental contribution is

there in the proposal of trying to provide a wide, structured list of common situations?

Like in all engineering principles, the goal is to equip the designer with commonly

accepted alternative design solutions for recurring problems. There are more than one

solution for every problem, be it ad hoc or recurring, but some of them have better

characteristics than others – even if none is a clear winner in every aspect of the

problem. Providing the designer with a toolbox of best practices does not attempt to

rigidly enforce a fixed set of solutions to standard problems; the goal is to plainly

explain –in a measurable way, if possible- the motivations, assumptions, benefits and

risks of each solution and, then, let the designer build, customize, reuse and adjust

these template solutions in knowledge of what the properties of the produced solution

are.

Ontological foundations. Patterns should address the fundamental concerns around

the design of a database schema; therefore, the comprehensive treatment of all these

concerns by a design pattern is unavoidable. To this day, there is a common

agreement around the concerns that a designer faces:

− Data integrity. The first concern for a database schema, introduced at the

seminal paper by E.F. Codd that introduced the relational model already dealt

with the issue of data integrity [Codd70]. Early enough, E.F. Codd realized

that unnecessary replication in a database can lead to data entry errors and,

subsequently, to inconsistencies in the information presented to the user.

Normal Forms were born together with the relational model and constitute the

only textbook-level pattern-related design method that is deeply incorporated

 3

in the corpus of the database literature, in terms of theoretical foundations, and

part of the curriculum of a database course.

− Query efficiency. Bruce Lindsay [Wins05] is quoted as having said that the

three most important aspects of a DBMS are “performance, performance, and

performance”. A database is built with the primary goal of answering user

queries and efficiency in this task is of uttermost importance. So, once the data

integrity and completeness aspects are resolved at the logical level, a designer

is obliged to fine-tune the design of a database (both at the logical and, mostly,

at the physical level) in order to achieve acceptable response time and

throughput for the user workload.

− Evolution. Typically, maintenance, or evolution (as we choose to call it in the

‘00s) involves around 50% of the resources of a software project. Database

centric systems are no exception to this rule. The difference of database-

centric systems from the software developed by the procedural or object-

oriented paradigm is the strict layering of the developed software.

A database with a physical configuration (indexes, ISAM files, disk placement,

clustering, etc) is placed at the bottom of this layered architecture. The data

independence principle envisioned by E.F. Codd places a logical level abstraction on

top of the physical layer, providing a mathematical abstraction for the construction of

applications in terms of the relational model. Plainly speaking, this paradigm requires

the designer to come up with a database schema, i.e., a set of relations, a.k.a. tables,

over which applications or ad-hoc queries are to be posed (without any regard to their

physical implementation). This logical-level schema constitutes a primitive API over

which the applications of the database-centric system are built as the third layer of this

architecture. Still, since database schemata have become large and complicated, the

coupling of applications with the underlying schemata becomes more and more

intense. One of the ideas behind this paper has to do with the introduction of an

auxiliary API (mainly supported by views) that abstracts the complexity of the logical

schema from the application developer and reduces the coupling of the database and

constructed applications on top of it.

 4

(a) (b)

Figure 2.1. Applications built (a) directly on top of the logical database schema, (b)

over an API-like layer of views

Pattern structure. How should we structure the presentation of patterns to

correspond to abovementioned ontological foundations? In this paper we adopt the

following structure for pattern presentation. Before proceeding, we would like to

clarify the terminology, in order to avoid confusion:

- A design problem is a frequently encountered situation where the designer

needs to map user requirements, or conceptual-level constructs (ER, UML

diagrams) to logical or physical constructs in the database. In this paper, we

 5

are not interested in providing alternative ways to construct queries over a

given schema; on the contrary, we are interested in designing database

schemata on the basis of higher-level requirements.

- A design pattern, or design solution, or simply design, is a response to a

problem.

The structure of a pattern is based (a) on the traditional pattern structure as delivered

by Gamma et al [GHJV95] and (b) on the fundamentals of everyday operations

around a database system.

- Motivation. The motivation discusses the situation that produces a puzzle for

the designer. The problem is contextualized and its parameters analyzed.

- Alternative Solutions. The answers to the problem, in other words, the design

patterns are presented. The description of each solution should normally

incorporate a definition of the database schema, and an illustrative example

both at the schema and the instance level.

- Interface to developers. Assuming a developer would like to have a certain

level of guarantees over the schema that his applications see, how can the

database provide an API-like layer on top of the relations at the logical level?

Every pattern must describe a mechanism that buffers schema evolution

effects (as much as possible) so that the developer can judge how the

application must interface with the database in order to minimize their

coupling.

- Behavior at the instance level. The first of the dynamic properties of a solution

(i.e., properties characterizing how the system will behave over time) has to do

with the management of insertion, deletion and updates of tuples in the

database.

- Behavior at the schema level. The second kind of dynamic properties has to do

with how the system is going to respond to future schema changes. These

changes are expected to stem from changes in the reality that the database

schema model.

- Overall discussion and comparison of alternatives. Finally, the presentation of

a set of patterns should include a comparative critical assessment of them.

 6

Again, we would like to stress that our focus is on maintenance and not performance.

In the following, we explore three cases of problems and patterns, specifically, (a)

pivoting, (b) materialization and (c) generalization.

 7

3 Pivoting

3.1 Motivation

The main motivation for the case of pivoting is the management of attribute-value

pairs. The case of attribute value pairs appears whenever attributes of similar

functionality and type appear within an entity. Take for example a database of the

public sector containing information about pensioners. Apart from the personal

information, a pensioner has a group of similar attributes concerning the kinds of

bonuses he is awarded and a group of similar attributes concerning the amounts of

money he is granted every month. Specifically, the first group might comprise

attributes like HandicapBonusPct, HeavyDutyProfessionType, WarVeteranMonths, each

denoting whether the pensioner deserves an extra bonus due to (a) some injury or

physical handicap (expressed as a 0-100 value on the pensioner’s ability to operate

normally), (b) the type of profession he exercised before retiring (constrained to

heavy duty professions), or, (c) his military service (in terms of months in combat).

The second group comprises attributes like Pension, Tax, HandicapBonus,

HeavyDutyProfessionBonus, WarVeteranBonus, with the obvious semantics, in terms of

monthly revenue or tax.

Assume that every bonus type and every type of amount that the pensioner receives is

modeled as a separate attribute. Then, constraints are easy to check and queries are

easily constructed and efficiently executed. Still, the database designer faces the

following problem: if an extra type of bonus is introduced, all the applications that

operate over the Pensioner relation have to be appropriately maintained (in fact, all

the queries of these applications have to be maintained as well as their mapping to the

graphical user interface that presents the results to the user).

3.2 Design solutions

To deal with this problem, we introduce two alternative modeling solutions for the

representation of this information. We organize attributes in two classes: (a) stable

attributes, for which no major or frequent modifications are anticipated at the schema

 8

level and (b) evolvable attributes that comprise the part of the schema where

alterations are foreseeable. The two proposed designs are as follows

− Flat design: all the properties of the entity are modeled as different attributes.

For example, in our case, we have the following relational structure:

EMP (E_ID,Name, HandicapBonusPct, HeavyDutyProfessionType, WarVeteranMonths,

Pension, Tax, HandicapBonus, HeavyDutyProfessionBonus, WarVeteranBonus)

− Attribute-value pairs: we construct three relations, (i) the stable relation with

the stable attributes, (ii) the master relation where each category of properties

is modeled as an attribute, and, (iii) a (set of) lookup relation(s) where the

description of the properties is maintained. For example, in our case, we have

the following relational structure:

EMP_Stable (E_ID, Name) (stable relation)

EMP_AMTS (E_ID, Amt_ID, Amt_Value) (master relation)

AMOUNT_TYPES(Amt_ID,Amt_Description) (lookup relation)

The name of the problem is pivoting referring to the well-known spreadsheet

operation where the attribute-value representation is transformed to the flat

representation. Figures 3.1 and 3.2 depict the schema-level structure of the flat and the

attribute-value-pair design, respectively.

Fig. 3.1 Flat Design pattern for pivoting data.

 9

Fig. 3.2 Attribute-value pattern for pivoting data.

Figures 3.3 and 3.4 depict the instance-level structure of the flat and the attribute-

value-pair design, respectively.

 10

EMP

Figure 3.3 Exemplary instance for the flat design.

Figure 3.4 Exemplary instance for the attribute-value pairs design.

Emp_ID Salary Bonus Tax Net

01 1500 300 500 1300

02 2000 500 700 1800

03 1500 500 1000

04 1000 1000

Emp_ID Amt_ID Amt_Value

01 1 1500

01 2 300

01 3 500

01 4 1300

02 1 2000

02 2 500

02 3 700

02 4 1800

03 1 1500

03 3 500

03 4 1000

04 1 1000

04 4 1000

Amt_ID Amt_Description

1 Salary

2 Bonus

3 Tax

4 Net

EMP

AMOUNT_TYPES

 11

3.3 Interface to Developers

Assuming a developer is building an application on top of the database, the main

decision he has to take is whether he needs to retrieve tuples in a flat or an attribute-

value based manner. This is mainly imposed by performance reasons: once the

structure of the database is set, then converting the instances from one pattern to the

other at runtime is too slow (especially for large amounts of data). In terms of

flexibility to evolution, clearly the attribute-value pattern is more flexible. A simple

view can also relate the fields to their textual description; if the view is an outer join

from the part of the fields, then, each entity can be related to a fixed set of fields, too.

ENTITY_FIELDS_FULL = ENTITY_FIELDS ��+ FIELDS

The conversion from one pattern to another can be done via an appropriate stored

procedure; using a composition of SQL queries for this purpose incurs too much

coding and maintenance effort as well as runtime overhead.

3.4 Behavior at the instance level

In this subsection, we discuss how the design decision for the schema of the master

relation affects applications that query or modify its contents.

Querying. The collection of the necessary information for a particular reference

entity (in our example, a pensioner) is straightforward in the case of a flat model. The

case of attribute-value pair requires a join of the master table with all the lookup

tables in order to reconstruct the textual description of the code id’s of the

parameterized properties. These differences concern also the case that a query

requests a full table scan for all the contents of the involved relation.

In terms of internal representation, clearly indexing improves performance for both

cases. In the attribute-value design with a single lookup, a clustered index might be

very efficient, too. A non-obvious problem of the flat model is that it suffers from the

presence of NULL values for attributes that are not pertinent to a certain record. This

also requires extra care at the authoring of counting queries. In terms of the necessary

disk space, the solution with the higher space overhead is determined by the average

 12

number of master records per entity and the number of NULL values in a flat

representation.

Modification: Tuple Insertions/Deletions/Updates. The flat model requires the

modification of a single record of the relation. On the other hand, the attribute-value

model requires the modification of as many master records as necessary for a single

entity that is inserted or deleted. A hidden problem with the updates is the two

step-process for the performance of the correct update: first one needs to detect which

code the update concerns (via the lookup relation) and then, the modification to the

master table can be performed. Moreover, triggers ON DELETE/UPDATE CASCADE must be

defined for the appropriate propagation of updates.

3.5 Behavior at the schema level

Clearly, schema modifications in the case of the flat design are the main reason for the

introduction of the attribute-value design. Returning to our example, assume a new

kind of bonus needs to be introduced for pensioners

NumberOfDependentFamilyMembers, along with the respective amount

FamilyMemberBonus. Clearly, the flat model requires all the applications accessing the

relation (data entry forms, stored procedures, application logic external programs, and

simple presentation reports) to be (a) located (which by itself is a task much harder

than it originally appears) and (b) appropriately maintained. On the other hand, the

attribute-value design simply requires the insertion of a single record for the bonus

type and the bonus amount in the lookup relations. Both designs also require the

population of the master relation with the appropriate values (if this results from the

business requirements).

Modification: Attribute Insertions/Deletions. The insertion or deletion of attributes

is straightforward in both designs. The modifications at the attribute-value design are

simpler, since they only involve tuples. Most importantly though, the applications

accessing the attribute-value schema are practically immune to these changes, if

appropriately authored (i.e., by taking the parameterized representation of the entity’s

properties in the database schema into consideration). Deletions are the most painful

for the case of flat design, since the applications simply crash!

 13

3.6 Critical assessment of the alternative designs

Clearly, the flat design is more efficient in terms of instance management and

querying. Most querying operations in the attribute-value design require joins of a

large master relation with the smaller lookup relations. Hash joins facilitate this kind

of queries quite efficiently, still, the performance degradation compared to the flat

design is evident. Modifications for the attribute-value design are also painful, since

they require a two–step process for relating the property description with the

appropriate record in the master relation.

Both solutions have space overheads, either due to multiple records per entity or due

to the presence of NULL values. No clear winner can be a-priori assumed for the

space overhead problem. NULL values pose an extra concern for counting queries,

too.

In terms of schema evolution, the attribute-value design is a clear winner if the

applications are appropriately constructed. All schema changes are reflected to tuple

insertions and deletions; the applications are also immune with respect to the danger

of crashing for the case of deletions.

Applicability: one could possible accept the flat design if (i) performance

requirements impose it, (ii) schema modifications are rare, and (iii) the application

code is appropriately stored and documented in such a way that maintenance is guided

from an organized repository. In terms of deployment, client-server applications will

probably suffer from the extra cost of re-deployment in the case of flat designs; on the

other hand, web-based applications with their centralized deployment of software

components are much easier to handle for the problem of re-deployment.

 14

4 Materialization

4.1 Motivation

Materialization is a relationship between an abstract class and a set of concrete

implementations of it. In the context of the object-oriented world, materialization is

mainly a typing issue: the abstract class provides a customizable framework for the

definition of a set of classes with similar structure and similar methods; the difference

of the materializations of the abstract class has to do with the types of the variables

and the method parameters.

We use the term materialization in order to deal with the separation of commonly

repeated information as opposed to information which is different between instances.

For example, a flight schedule between two cities has the same flight number, and the

same standard hours of departure and arrival; still, every day that the flight is

executed there is a different airplane that executes the flight, different crew members,

etc.

Assume the case of a train organization of a country. The organization is responsible

for providing connections between different cities of the country. Each connection

between two cities has a set of standard, scheduled itineraries. Every itinerary has

departure and arrival stations as well as scheduled departure and arrival times. These

'template' itineraries are realized by specific routes that take place. Each route

realization has a date and actual departure and arrival times that are possibly different

from the scheduled ones. Also the database of the organization records which train

was actually used for the realization of the itinerary. Trains are organized in types and

the organization is in possession of 3 types of trains, specifically, trains of small,

medium and large capacity. Each train type has a name, a number of train wagons and

a specific engine power. Trains belong to a train type and are named after their

nicknames. Due to size limitations and the particularities of the tracks, there is an

upper limit to the type that each connection can support.

 15

 Ioa_thes_123456
type_name: ioa-thes
sch_time_departure:16.00
station_departure: IOA
sch_time_arrival: 23.00
station_arrival: THES

serial no.: 123456
date: 9/10/2005
actual_dept_time: 16.02
actual_arrival_time: 23.10

train_no_2
type_name: middle

#wagons: 5
engine_size: 1400

serial no.: 2
nickname: Obelix

TRAIN TYPE
type_name

#wagons
engine_power

TRAIN
serial no.
nickname

Mesaia
type_name: middle

#wagons: {5,6,7,8}
engine_size: {1200,1400}

instance of
instance of

ROUTE TYPE
type_name
sch_time_departure
station_departure
sch_time_arrival
station_arrival

ROUTE EXECUTION
serial no.
date
actual_dept_time
actual_arrival_time

*

1

*

1

Ioa_thes
type_name: ioa-thes
sch_time_departure:16.00
station_departure: IOA
sch_time_arrival: 23.00
station_arrival: THES instance of instance of

Figure 4.0. A high level informal description of the entities involved in the reference

example

4.2 Design solutions

The main idea behind the solution is to separate the recurring and non-recurring parts

of the data in different relations. We will refer to the former relation as the abstract or

template relation and to the latter as the concrete or template materialization relation.

The ABSTRACT relation contains the tuples that record categories (e.g., all the

connections provided by the train company of the previous example) and the CONCRETE

relation contains the specific characteristics of each individual implementation (e.g.,

the train used for a specific route on a specific date). The concrete relation is linked to

the abstract relation via a foreign key; this way, a simple join of the two relations can

give the full information for a specific flight execution. We will refer to the result of

this join operation as the full materialization of the template.

For reasons of simple normalization, there is a need to differentiate the relation of the

template from the relation of its materializations.

In Figure 4.1, we introduce a relation ABSTRACT with all the attributes capturing

recurring information and a relation CONCRETE capturing the information that is

differentiated in every realization of the abstract template. A foreign key connects the

materialization to the template relation.

 16

4.3 Interface to developers

There are two different aspects that need to be covered by the implementation of the

database for a materialization scheme: (a) efficient management of updates and (b)

efficient reconstruction of all the information for a specific instance, via the full

materialization relation.

We observe that the structure of the pattern directly facilitates the update of the

information. On the other hand the full materialization is obtained by a view

CONCRETE_FULL that joins the two involved relations ABSTRACT and CONCRETE over the

foreign key.

TRAIN_FULL = TRAIN_TYPE �� TRAIN

CONCRETE_FULL = ABSTRACT �� CONCRETE

4.4 Behavior at the instance level

Querying. The retrieval of a specific instance and the retrieval of all the instances of a

certain materialization are facilitated via the view CONCRETE_FULL.

Modifications. The insertion, deletion and update of data is straightforward. The two

relations must be linked with ON DELETE / UPDATE CASCADE assertions.

4.5 Behavior at the schema level

Due to its inherent normalized structure, the overall design handles schema

modifications straightforwardly.

4.6 Discussion

There is nothing particularly fancy about the template pattern except that (a) it relates

roughly to the idea of object-oriented factories and (b) it is an excellent tool to teach

normalization in a class. The structure of a template provides an excellent testbed for

the production of erroneous solutions by the students and the identification of the

dangers of denormalization (specifically, inconsistent values due to data entry errors).

An extra benefit is that the students visualize the template structure in their minds and

have a concrete example (with the simple visual representation of Fig. 4.0, 4.3) as a

reference tool that helps them understand the intuition and motivation behind the

formalities of the normalization theory.

 17

Alternative structures. The view CONCRETE_FULL can be materialized too. Clearly,

this increases the query time with the extra overhead of replica maintenance. Still,

since the size of the abstract class is expected to be significantly smaller that the one

of the materialization, and in any case, quite small, we do not anticipate that the join

of the two relations imposes a significant overhead (both hash joins and index-based

joins can perform quite efficiently for this kind of queries). Therefore, materialization

of the view can be envisioned only in cases with too strict QoS constraints on the

response time of the queries.

Fig. 4.1 Design Solution for the materialization of templates

 18

«Relation»

Route Type
«Relation»

Route Execution

«Constraint»

{ Primary Key} «Constraint»

{ Primary Key}

«Attribute»

RT_ID

«Attribute»

RT_ID

«Attribute»

RT_TrainType

«Attribute»

RT_Name

«Attribute»

RT_DepStation

«Attribute»

RT_DepTime

«Attribute»

RT_ArrStation

«Attribute»

RT_ArrTime

«Attribute»

RE_ID

«Constraint»

{ Foreign Key}

«Attribute»

RE_Date

«Attribute»

RE_DepTime

«Attribute»

RE_ArrTime

«Attribute»

RE_TrainUsed

«Relation»

Train Type

«Relation»

Train

«Constraint»

{ Primary Key} «Constraint»

{ Primary Key}

«Attribute»

TT_ID

«Attribute»

TT_ID

«Attribute»

TT_Name

«Attribute»

T_ID

«Attribute»

Nickname

«Attribute»

NumWagons

«Attribute»

EngineType

Fig. 4.2 A double, symmetric application of the materialization template for route

types / routes and train types / trains

 19

 ROUTE-TYPE

RT_ID RT_Name RT_DepStation RT_DepTime RT_ArrStation RT_ArrTime RT_TrainType

1 M-O Moscow 11.00 Omsk 16.00 120

2 O-T Omsk 16.30 Tomsk 19.00 110

3 T-I Tomsk 19.10 Irkutsk 22.00 110

 ROUTE-EXECUTION

RE_ID RT_ID RE_Date RE_DepTime RE_ArrTime RE_TrainUsed

1001 1 15/7 11.00 16.20 20

1002 2 15/7 16.31 19.05 10

1005 1 16/7 11.00 16.00 11

 TRAIN-TYPE TRAIN

TT_ID TT_Name NumWagons EngineType T_ID TT_ID Nickname

100 Small 15 1500 10 110 Serko

110 Middle 20 2000 20 120 Nikolai

120 Large 30 3000 11 110 Nadia

Fig. 4.3 Exemplary instance for the materialization pattern

 20

5 Generalization and Specialization for Relational Databases

5.1 Motivation

In the context of conceptual modeling, generalization is the process via which a set of

classes are abstracted via a higher-level class (also known as parent, or, super class)

whose extent encompasses the instances of all these classes. Specialization is the

inverse process, where a set of instances of a high-level are also assigned to a

specialized new class (also known as child, descendant, or, subclass) with an extra,

refined semantics. Typically, the relationship between a high-level class and one of its

subclasses is referred to as an IsA relationship (shortcut for is-a-subclass-of). In both

cases, the semantics of the IsA relationship is that the extent (i.e., the set of instances)

of the subclass is a subset of the extent of the parent class. Frequently, for reasons of

convenience, these subset semantics at the extent level are also accompanied with

structural inheritance: the subclass inherits the structure of the super-class and extends

it with extra properties, functionality or both.

Assume the following simple scheme. A mail company distributes surface mail. Each

letter that the company delivers has a sender and a recipient. Letters are classified as

(a) simple letters, with no extra information for them, (b) express letters, also carrying

information for a guaranteed delivery data and (c) packages, whose weight is also

recorded. Some of the packages are also fragile; for the latter, the kind of wrapping is

also recorded.

Fig 5.1. UML representation of the mail company classes.

 21

The requirements for the proposed solution aim to support the following three

fundamental properties of the object-oriented paradigm:

(i) Subset relationship between the extents of the super-class and its subclasses.

(ii) Polymorphic usage of the descendants by other constructs or applications.

(iii) Structural inheritance of the common super-class’ attributes to the descendants

and specialization of the descendants with extra attributes.

Any design pattern that provides a solution to the problem of inheritance should

support the explicitly deal with the following common issues which are the direct

representation of the aforementioned requirements in the relational world.

1. The pattern must allow the application developer to easily retrieve all the

instances of a class – with the instances of its descendants included. We will

consistently apply the following convention: for each class, we require (a) a

view that returns all these instances and (b) a view that returns only the

instances of its very own extent (i.e., without the instances of its subclasses).

Assuming a class named C we will name these views C_ALL, C_ONLY,

respectively. Any pattern, despite its internal structure must be in a position to

support the definition of these two views.

2. The above solution also facilitates the requirement that a pattern must allow

the polymorphic usage of the contents of relations: in other words, the

application can be written with respect to the view C_ALL with the application

developer free from the need to take care for collecting all the instances of the

different subclasses. Still, there are two issues that are not resolved by the

abovementioned solution: (a) how do we enforce that the population of the

relations is performed correctly, and, (b) how do we allow foreign keys to

parent or child relations? To deal with issues we require the patterns to

explicitly deal with the issue of foreign keys to the ancestor class.

3. The final issue has to do with the location of the common and non-common

attributes of the ancestor and descendent relations. In other words, the actual

structure of the database schema has to be determined in order to support the

aforementioned set of views that is likely to act as a programming interface for

the developers who will access the database.

 22

C

C 1

C 2
. . .

C l

B

B 1

B 2
. . .

B m

A

A 1

A 2
.. .

A n

5.2 Modeling Solutions

In this section, we will present four design solutions that map an IsA relationship to a

set of relational tables. We will discuss both the generic representation and the

instantiation of the patterns to our reference example. In the rest of our deliberations,

we will assume the existence of a super-class Α(A1, A2,…, An) and two of its

subclasses, Β(Β1, Β2, ..,Βm) and C(C1, …, Cl). Attribute A1 is the primary key for the

super-class relation and, due to the inheritance property it is also a primary key for the

subclasses, too.

Fig 5.2 UML representation of the template IsA hierarchy we will use in the sequel

The first decision one has to make concerns whether (a) a single relation will be

employed for the whole hierarchy, or, (b) a design that is coarsely directed towards

one table per class will be chosen. Choosing a single relation for the whole hierarchy

gives the simplest design pattern for the problem. On the other hand, choosing a

strategy of one relation per class leads to a variety of design decisions that we present

in detail in the following paragraphs.

Pattern: Single Table Hierarchy. The first design pattern, which we call Single

Table Hierarchy is based on the idea of keeping a single relation with (a) all the tuples

of all classes as its extent and (b) all the attributes of all the classes as its schema. An

extra attribute, Class_Type is also part of the schema, in order to assign each tuple to

the appropriate class. The class descriptions are captured in the relation CLASSES and

 23

Class_Type is a foreign key to this relation. Observe that the relation CLASSES is also

the place where the structure of the hierarchy is kept, via the attribute Parent.

.

.

.

«Relation»

HIERARCHY

«Relation»

CLASSES

«Constraint»

{Primary Key}

«Constraint»

{ Primary Key}

«Constraint»

{Foreign Key}

«Attribute»

A1

«Attribute»

An

.

.

.

«Attribute»

B1

«Attribute»

Bm

.

.

.

«Attribute»

C1

«Attribute»

Ck

«Attribute»

ClassType

«Attribute»

Description

«Attribute»

Parent

«Attribute»

ClassType

Fig 5.3 Single Table Hierarchy pattern

 24

 LETTERS

L_ID Sender Recipient Dlv_date Weight Wrapping Class_Type

1 Plato Archytas 110

2 Paul Titus 110

3 Aristotle Theophrastus 15/07 120

4 Archimedes Eratosthenes 200 130

5 Paul Timothy 100 Hard 135

 CLASSES

Class_Type Parent Class_Descr

100 Letter

110 100 Simple

120 100 Express

130 100 Package

135 130 Fragile

Fig 5.4 Exemplary Instance of the Single Table Hierarchy pattern

One relation per class. Apart from the previous strategy of storing all the hierarchy

in a single table, another option is to try using one table per class, while keeping the

hierarchy in auxiliary structures, too. Several decisions have to be taken in this case;

these decisions are summarized in Figure 5.5.

Common

attributes

Super-class extent

virtual materialized

(replicated)

@ descendants

@ ancestor

Lookup table for

classes: Yes/No

Polymorphism

for FK’s

none

dedicated

lookup table

root class

Fig 5.5 Space of alternatives for various subproblems

A first design choice has to do with the way the database schema allows the definition

of foreign keys towards the tuples of the hierarchy, along with the necessary

 25

polymorphism this might entail. A first solution is to provide a reference-agnostic

solution where the other relations can have foreign keys only to individual relations

but not to the whole hierarchy. A second solution involves the usage of a very simple

lookup relation LOOKUP(OID,CLASS) which keeps track of all tuples via an ‘object

id(OID)’ as well as the actual table where the tuple is found. A third solution involves

keeping all the tuples (or part of them) in the relation of the root class and allowing

other relations to define foreign keys to the primary key of the root class. Moreover,

there are two fundamental design choices concerning the location of the common

attributes (in the super-class only, or in every relation) and the storage of the extent of

the super-class, which includes all the tuples of its sub-classes (either to be virtually

computed or replicated in the root class, too). We organize the presentation of the

presented patterns around the two last design choices; Fig. 5.6 depicts the patterns that

we present for these combinations.

 SUPERCLASS EXTENT

 Virtual Materialized

Only at

ancestor
NOT APPLICABLE Vertical split

C
O

M
M

O
N

 F
IE

L
D

S

At descendants
Virtual super-class

extent

Materialized super-class

extent

Fig. 5.6 names of presented patterns with their design choices

Pattern: Vertical split. The second design pattern that we present, vertical split, is

based on the idea that common attributes between an ancestor and its descendants

reside at the relation of the ancestor (Fig. 5.7 and 5.8). This allows the efficient

querying of the super-class’ full extent for the common attributes (a kind of query

which is typical in polymorphic querying). At the same time, there is no need for a

separate lookup relation for “object identifiers”, since the root of the hierarchy

encompasses all these identifiers at its primary key. Of course, the full reconstruction

 26

of a tuple of a descendant class requires joining the appropriate tuples at the ancestor

and descendant relations.

..
«Relation»

A
«Relation»

CLASSES

«Constraint»

{Primary Key}

«Constraint»

{ Primary Key}

«Constraint»

{Foreign Key}

«Attribute»

A1

«Attribute»

An

..

«Attribute»

C1

«Attribute»

Ck

«Attribute»

ClassType

«Attribute»

Table

«Attribute»

Parent

«Attribute»

ClassType

«Relation»

C

«Attribute»

A1

..

«Attribute»

B1

«Attribute»

Bm

«Relation»

B

«Attribute»

A1
«Constraint»

{Foreign Key}

Fig 5.7 Vertical Split pattern.

Pattern: Virtual super-class extent. Once the idea of keeping the common attributes

at the root class is abandoned, we result in relations whose schema has all the

attributes of their corresponding class, independently on whether they are inherited or

descendant-specific. The pattern virtual super-class extent is based on the idea that

the extent of a super-class will be collected at runtime. Thus, each class has exactly

the tuples that belong strictly to its very own extent; its full extent is collected via a

view that performs the union of the respective sub-class relations. A consequence of

this design is that there is no relation containing all the object identifiers; therefore,

we introduce a lookup relation, ID_LOOKUP_TABLE, for this purpose. All polymorphic

 27

foreign keys are directed to this lookup relation. Fig. 5.9 depicts this pattern

graphically and Fig. 5.10 presents an instance of this pattern.

 LETTERS

L_ID Sender Recipient Class_Type

1 Plato Archytas 110

2 Paul Titus 110

3 Aristotle Theophrastus 120

4 Archimedes Eratosthenes 130

5 Paul Timothy 135

 Express Packages Fragile

L_ID Dlv_date L_ID Weight L_ID Wrapping

3 15/07 4 200 5 Hard

 5 100

 CLASSES

Class_Type Parent Class_Descr

100 Letter

110 100 Simple

120 100 Express

130 100 Package

135 130 Fragile

Fig 5.8 Exemplary Instance of the Vertical Split pattern

Pattern: Materialized super-class extent. This pattern aims to speed up the querying

of the full class extent of a super-class, by replicating the instances of its subclasses in

its extent. On the other hand, this feature incurs the danger of inconsistencies if the

modifications of subclass extents are not automatically reflected to the super-class

extent. A second difference with the virtual super-class extent pattern is that the

replication alleviates the need for an extra lookup table; polymorphic foreign keys can

now access the super-class relation which contains the common part for all the tuples

for all the classes of the hierarchies.

 28

..«Relation»

A

«Relation»

LOOKUP

«Constraint»

{Primary Key}

«Constraint»

{ Primary Key}

«Constraint»

{Foreign Key}

«Attribute»

A1

«Attribute»

An

«Attribute»

OID

«Attribute»

ClassType

«Relation»

CLASSES

«Attribute»

ClassType

«Attribute»

Table

«Attribute»

Parent

«Constraint»

{ Primary Key}

..

«Attribute»

A1

«Attribute»

An

..

«Attribute»

C1

«Attribute»

Ck

«Relation»

C

«Attribute»

A1

..

«Attribute»

B1

«Attribute»

Bm

«Relation»

B

..

«Attribute»

An

Fig 5.9 Virtual Super-class Extent pattern

 29

 SIMPLE

 EXPRESS

L_ID Sender Recipient L_ID Sender Recipient Dlv_date

1 Plato Archytas 3 Aristotle Theophrastus 15/07

2 Paul Titus

 PACKAGES

L_ID Sender Recipient Weight

4 Archimedes Eratosthenes 200

 FRAGILE

L_ID Sender Recipient Weight Wrapping

5 Paul Timothy 100 Hard

 LOOKUP CLASSES

OID Class_Type Class_Type Parent Class_Descr

1 110 100 Letter

2 110 110 100 Simple

3 120 120 100 Express

4 130 130 100 Package

5 135 135 130 Fragile

Fig 5.10 Exemplary instance of the Virtual Super-class Extent pattern

 30

 Fig. 5.11 Materialized Super-class Extent pattern.

 31

 CLASSES

 LETTERS

Class_Type Parent Class_Descr L_ID Sender Recipient Class_Type

100 Letter 1 Plato Archytas 110

110 100 Simple 2 Paul Titus 110

120 100 Express 3 Aristotle Theophrastus 120

130 100 Package 4 Archimedes Eratosthenes 130

135 130 Fragile 5 Paul Timothy 135

 EXPRESS

L_ID Sender Recipient Dlv_date

3 Aristotle Theophrastus 15/07

 PACKAGES

L_ID Sender Recipient Weight

4 Archimedes Eratosthenes 200

5 Paul Timothy 100

 FRAGILE

L_ID Sender Recipient Weight Wrapping

5 Paul Timothy 100 Hard

Fig. 5.12 Exemplary instance of the Materialized Super-class Extent pattern.

 32

5.3 Support of the logical-level programming interface

The querying of data in a schema that supports generalization is fundamentally based

on a set of views that present a programming interface for applications and ad-hoc

querying. Specifically, assuming a class named C we will employ a view named

C_ALL, containing the full extent of the class. An auxiliary view C_ONLY can also be of

help if applications require the extent of a class without the extents of its subclasses.

Fig. 5.13 discusses the way to compute these two views for the different design

alternatives.

 C_ONLY C_ALL

SINGLE TABLE

HIERARCHY

Schema: projection to the class’

schema.

Extent: selection of the

instances that belong to the

particular class.

Schema: projection to the class’

schema.

Extent: selection of the instances

that belong to the classes of the

hierarchy rooted at the class.

Can be computed also as the union

of C_ONLY and Ci_ALL of all the

subclasses Ci.

VERTICAL SPLIT

Schema: join of the relations for

all the classes in the path from

the root class to the class.

Extent: similarly, with an extra

selection to remove instances

that belong to subclasses.

Schema & Extent: join of the

relations for all the classes in the

path from the root class to the

class.

VIRTUAL SUPER-

CLASS EXTENT

Schema & Extent: simple query

to the class’ relation

Schema & Extent: union of all the

relations of the subclasses

(projected over the class’ schema)

with the class’ relation.

MATERIALIZED

SUPER-CLASS

EXTENT

Schema & Extent: simple query

to the class’ relation with an

extra selection to remove

instances that belong to

subclasses.

Schema & Extent: simple query to

the class’ relation

Fig. 5.13 View computation for different patterns

 33

Should the two views be virtual or materialized? The reader is reminded that a virtual

view acts like a macro: each time a query over a view is posed, the query is

automatically rewritten to replace the view with its definition. A materialized view on

the other hand has its extent fully computed; this provides the extra benefit that the

tuples to be processed are already available at query time. Still apart from the space

overhead, the materialized view incurs the extra maintenance cost of refreshment

whenever the contents of its underlying source relations are modified. Fortunately,

modern DBMS’s take care of performing this refreshment automatically.

5.4 Behavior at the instance level

We will discuss the following operations at the instance level: (a) retrieval of all the

information around a certain record, (b) retrieval of all the instances of a class and (c)

insertion, deletion and updates of a certain tuple.

Tuple retrieval. The retrieval of the full extent of a class is straightforward, via a

SELECT * FROM C_ALL query. The retrieval of individual tuples, nevertheless, poses

additional challenges. Assuming that the user has retrieved the primary key of a tuple

(e.g., via another query on any of the rest of the attributes), the task of tuple

reconstruction requires (a) the identification of the class to which the tuple belongs

and (b) the retrieval of the tuple from any of the two views that act as an API. Fig.

5.14 presents the way to perform this action for the alternative solutions.

 34

 TUPLE’S CLASS KNOWN TUPLE’S CLASS UNKNOWN

SINGLE TABLE

HIERARCHY

Simple query to the relation itself; no need for views.

VERTICAL SPLIT

Simple query to the

appropriate C_ONLY or C_ALL

view (depending on the

faster of the two)

Derive the tuple’s class via a

simple query to the root

class; then, a second query to

the appropriate view is due.

VIRTUAL SUPER-

CLASS EXTENT

Simple query to the C_ONLY

view

Simple query to the lookup

relation class; then, a second

query to the appropriate view

is due.

MATERIALIZED

SUPER-CLASS

EXTENT

Simple query to the

appropriate C_ONLY or C_ALL

view (depending on the

faster of the two)

Derive the tuple’s class via a

simple query to the root

class; then, a second query to

the appropriate view is due.

Fig. 5.14 Tuple reconstruction for generalization patterns

In terms of efficiency, for the case when the appropriate view to query is not obvious,

simple cost considerations clarify the appropriate choice as follows. If an index is

present, then there is no real difference for all practical purposes. In the case of the

absence of an index, if the computation of the irrelevant tuples from the underlying

relation is expensive for C_ONLY, then C_ALL should be preferred; otherwise, C_ONLY is

the appropriate choice.

Tuple modifications. Tuple modifications involve the insertion, deletion, and update

of records.

− Single table hierarchy: All operations are straightforward. Still, insertions and

updates have the extra overhead to populate the correct attributes depending

on the class being updated.

− Vertical split: The modification program must take care of updating the

appropriate relations, depending on the class of the modified tuple.

Automating the consistency of deletions via ON DELETE CASDACE assertions is

also useful among the subclass and super-class relations.

− Virtual super-class extent: The lookup relation must always be updated in

insertions; every other operation is straightforward. In the case of deletions

 35

and updates, if the class of the tuple is not known, a lookup must be performed

first to the lookup relation.

− Materialized super-class extent: All operations are straightforward. If the class

of the modified tuple is not known, then a lookup at the root relation must be

performed. Assertions ON DELETE/UPDATE CASDACE for deletions and updates

are necessary for the automation of these processes.

5.5 Behavior at the schema level

We are concerned with two types of schema modification: (a) change in the set of

attributes of a class and (b) change in the set of classes of a hierarchy.

Attribute-level modifications. Attribute level modification involves the addition of a

new attribute, the deletion of an existing one and the update (rename, type alteration)

of an existing attribute. We assume that primary keys are not modified under any

circumstance. Again, all operations are straightforward for the single table hierarchy

and vertical split design solutions, as the class under modification determines and the

relation to be updated too. For the cases of virtual and materialized super-class

extents, the modifications must be repeated to all the descendants of the modified

class.

Class-level modifications. Class-level modifications involve the addition of new

classes and the deletion of existing ones. We assume deletions of leaves in the class

hierarchy (all other deletions can be reduced to sequences of leaf deletions).

Modifications of classes have been dealt with in the attribute-level modifications.

Single table hierarchy involves simply adding or deleting the appropriate attributes for

the hierarchy’s relation. All the multi-relation patterns require the addition of a new

relation (with a foreign key to the appropriate root or lookup relation), or the deletion

of an existing relation (respectively). All operations require the update of relation

CLASSES and the readjustment of the views C_ALL and C_ONLY.

 36

5.6 Critical assessment of alternative designs

In this subsection, we summarize the benefits and vulnerabilities of the alternative

designs that we have proposed.

 SINGLE

TABLE

VERTICAL

SPLIT

VIRTUAL

EXTENT

MATERIALIZED

EXTENT

STORAGE

NULL values �� ☺ ☺ ☺

Redundancy ☺ ☺ ☺ ��

QUERYING

Complexity of C_ONLY ☺☺ �� ☺☺ ☺

Complexity of C_ALL ☺☺ � ☺ ☺☺

UPDATES

INS tuple � � � �

DEL tuple ☺ � � �

UPD tuple � ☺ � �

SCHEMA

MODIFICATIONS

ADD field � � � �

DEL field � � � �

UPD field � � � �

ADD class � � � �

DEL class � � � �

Figure 5.15 Comparative description of alternative designs for the generalization

problem

Structure. Obviously, the single table hierarchy design is practically denormalized;

as such it suffers both from data entry problems and from a multitude of NULL

values. Apart from the space management overheads, this has the extra overhead of

having to take care of counting queries.

Virtual classes. Virtual classes are characterized by the absence of instances that

belong only to their own extent and not in any of their subclasses; in other words,

each of their instances belongs to the extent of one of their subclasses. Solutions with

materialized super-class extents remain unaffected from the virtual character of the

 37

super-class since the subclass instances are stored in the super-class relation (in terms

of the common attributes). Solutions with virtual super-class extents are also

unaffected due to the usage of the lookup relation; in this case it is possible to omit

the super-class relation from the schema since it has no instances anyway.

6 Conclusions

We believe that design patterns are a clear need for the database world as they can

serve as guiding aids and reference language for designers, especially in their early

steps. In the University of Ioannina we have used the abovementioned problems and

patterns in the context of an advanced undergraduate elective database course. The

results have been encouraging, since:

− the students were eager to participate and quite often they embarked in the

task of devising alternatives for the solutions that we discussed,

− too many issues concerning fundamental notions of the database world were

revisited with a clear viewpoint once patterns were introduced (for example,

materialization is a very good starting point to discuss normalization;

generalization demonstrates nicely the benefits of foreign keys, etc),

− the activity of teaching best practices via examples is always very helpful for

the instructor, too, since the weaknesses of the students are very clearly

demonstrated.

Clearly, too many issues are open; the main issue is a clarification of how we do view

the fundamental structure of design patterns for databases. More patterns have to be

devised, a balanced organization must be extracted (not too detailed and not too

simplistic) and the deep foundations of why a solution is good must be further

investigated (possibly via concrete metrics rather than rumor or inconclusive

experiments).

 38

References

[Codd70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Commun. ACM 13(6): 377-387 (1970)

[Dahc98] M. Dahchour. “Formalizing Materialization Using a Metaclass
Approach”. CAISE 1998: pp. 401-421, 1998.

[DKPZ05] M. Dahchour, M. Kolp, A. Pirrote and E. Zimanyi. “Generic
Relationships in Information Modelling”, Journal of Data Semantics,
Volume 4, 2005.

[Dong04] J. Dong. ”Adding pattern related information in structural and
behavioural diagrams”. Information & Software Technology 46(5):
pp.93-300, 2004.

[GHJV95] E.Gamma, R. Helm, R. Johnson and J. Vlissides. “Design Patterns
Elements of Reusable Object-Oriented Software”. Professional
Comptuting Series. Addison Wedley, Reading, 1995.

[Kolp01] M. Kolp. “Semantics Relationships”, Lecture Semantics
Relationships, University of Toronto, 2001. In collaboration with A.
Pirotte and M. Danhchour, University of Louvain.

[Mylo98] J. Mylopoulos. "Information Modelling in the Time of the Revolution",
Information Systems 23(3-4), pp. 127-156, June 1998.

[TrBu07] A. Tropashko and D. K. Burleson. “SQL Design Patterns: Expert
Guide to SQL Programming”. Rampant Techpress. IT In-Focus, April
2007.

[Wins05] M. Winslett. Bruce Lindsay speaks out. SIGMOD Record, Vol. 34,
No. 2, June 2005.

