
Object-Oriented Databases
Object Persistence

• Object-Relational Mappings and Frameworks

• Serialisation

• Persistent Programming Languages

September 25, 2009 1Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Principles of Persistence

 Data has to outlive the execution of the program

 Independence
 persistence of data object independent of how the program

manipulates that data object

 Data type orthogonality
 all data types should be allowed the full range of persistence

 Identification
 choice of how to provide and identify persistence at language level

independent of choice of data objects in language

 Implicitness
 data does not have to be moved or copied to be made persistent

September 25, 2009 2Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Uniformity

 Treat data values uniformly, independent of
 longevity

 size

 type

 Achieve uniformity for all aspects of system services
 data definition

 operations

 integrity

 concurrency control

 distribution

September 25, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Range of Persistence

1 Transient results in expression evaluation

2 Local variables

3 Global variables and heap items

4 Data that lasts a whole execution of a program

5 Data that lasts for several executions of several programs

6 Data that lasts for as long as a program is being used

7 Data that outlives a successions of versions of such a program

8 Data that outlives versions of the persistent support system

September 25, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Traditional Programming Languages

 Facilities for the manipulation of data whose lifetime does

not extend beyond activation of the program

 Storage of data requires mapping to and from files or

DBMS

relational

hierarchical

network

arrays

records

abstract data types

DBMS PL

September 25, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Disadvantages

 Effort to understand and manage mappings from program

data to stored data
 IBM Report (1978)

«30% of application code is concerned with transferring data to and
from files or DBMS»

 Data type protection of programming language system

often lost in the mapping

September 25, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Databases and Programming Languages

 Database and programming languages communities

research and develop products independently despite

having to provide many similar services

 Database focus
 preserve large volumes of data reliably

 support many processes operating against data efficiently

 Programming language focus
 help programmers be precise

 make programs understandable

September 25, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Databases and Programming Languages

 Separate development and consequent inconsistencies

tend to perpetuate and grow

 Intellectual and software investment in each camp goes

against adoption of other’s ideas

 View of database from programming language
 Mess of incomprehensible ad hoc design

 View of programming language from database
 Programming languages unhelpful with real problems such as bulk

types, persistence, concurrency and transactions

September 25, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Two Approaches

 Glue current underlying technologies together
 “glue-ware”, e.g. object-relational mappings and frameworks

 hide technologies behind sufficient “standard” interface

 underlying differences in semantics ultimately show through

 Complete computational environments
 Java object serialisation

 persistent programming languages

September 25, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Object-Relational Mappings

 Map object-oriented domain model to relational database

 Free developer of persistence-related programming task

 Hibernate
 maps Java types to SQL types

 transparent persistence for classes meeting certain requirements

 generates SQL for more than 25 dialects behind the scenes

 provides data query and retrieval using either HQL or SQL

 can be used stand-alone with Java SE or in Java EE applications

 Java Persistence API (JPA)
 Enterprise Java Beans Standard 3.0

 introduced annotations to define mapping

 javax.persistence package

September 25, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Designing an Object-Relational Mapping

OOP

RDBMS

OOP

RDBMS

OOP

RDBMS

OOP

RDBMS

Mapping

Top-down Bottom-up

Mapping

Inside-out Outside-in

Mapping Mapping

September 25, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Example Class Hierarchy

+getName(): String

+setName(name: String)

+getBirthday(): Date

+setBirthday(birthday: Date)

+getAge(): int

name: String

birthday: Date

Author

+getTitle(): String

+setTitle(title: String)

+getYear(): int

+setYear(year: int)

title: String

year: int

Publication

+getBeginPage(): int

+setBeginPage(page: int)

+getEndPage(): int

+setEndPage(page: int)

beginPage: int

endPage: int

Article

+getPrice(): double

+setPrice(price: double)

price: double

Book

0..* 0..*

September 25, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Mapping Classes

public class Author {

private long id;

private String name;

private Date birthday;

private Set<Publication> publications;

/**

* No-argument constructor is a required by Hibernate.

*/

Author() { }

public Author(String name) {

this.name = name;

this.publications =

new HashSet<Publication>();

}

...

}

September 25, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Mapping Classes

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>

<class name="ch.ethz.globis.oodb.hibernate.domain.Author" table="AUTHOR">

<id name="id" column="AUTHOR_ID">

<generator class="native" />

</id>

<property name="name" />

<property name="birthday" />

<set name="publications" table="AUTHORSPUBLICATIONS" cascade="all">

<key column="AUTHOR_ID" />

<many-to-many column="PUBLICATION_ID"

class="ch.ethz.globis.oodb.hibernate.domain.Publication" />

</set>

</class>

</hibernate-mapping>

September 25, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Mapping Associations

 Unidirectional and bidirectional associations

 Unordered and ordered associations

 Association cardinality types
 one-to-one

 many-to-one and one-to-many

 many-to-many

 Join Tables to map complex associations

CREATE TABLE AUTHOR(AUTHOR_ID BIGINT NOT NULL PRIMARY KEY, ...)

CREATE TABLE AUTHORSPUBLICATIONS(

AUTHOR_ID BIGINT NOT NULL,

PUBLICATION_ID BIGINT NOT NULL,

PRIMARY KEY(AUTHOR_ID, PUBLICATION_ID))

CREATE TABLE PUBLICATION(PUBLICATION_ID BIGINT NOT NULL PRIMARY KEY, ...)

September 25, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Mapping Inheritance

 Multiple strategies to map inheritance
 one table per class hierarchy

 one table per subclass

 one table per concrete class

 Mapping strategies can be mixed for different branches of

an inheritance hierarchy

 Implicit polymorphism
 one table per concrete class

 common interface is not mentioned in the mapping

 common properties are mapped in every table

September 25, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Mapping Strategies

 One Table Per Class Hierarchy

 One Table Per Subclass

 One Table Per Concrete Class

P D A B

+getTitle(): String

+setTitle(title: String)

+getYear(): int

+setYear(year: int)

title: String

year: int

Publication

+getBeginPage(): int

+setBeginPage(page: int)

+getEndPage(): int

+setEndPage(page: int)

beginPage: int

endPage: int

Article

+getPrice(): double

+setPrice(price: double)

price: double

Book P A B

P A P B

September 25, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

One Table Per Class Hierarchy

<class name="Publication" table="PUBLICATION">

<id name="id" type="long" column=" PUBLICATION_ID">

<generator class="native"/>

</id>

<discriminator column="PUBLICATION_TYPE" type="string"/>

<property name="title" column="TITLE"/>

<property name="year" column="YEAR"/>

<subclass name="Article" discriminator-value="ARTICLE">

<property name="beginPage" column="BEGIN_PAGE"/>

<property name="endPage" column="END_PAGE"/>

</subclass>

<subclass name="Book" discriminator-value="BOOK">

<property name="price" column="PRICE"/>

</subclass>

</class>

September 25, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

One Table Per Subclass

<class name="Publication" table="PUBLICATION">

<id name="id" type="long" column="PUBLICATION_ID">

<generator class="native"/>

</id>

<property name="title" column="TITLE"/>

<property name="year" column="YEAR"/>

<joined-subclass name="Article" table="ARTICLE">

<key column="PUBLICATION_ID"/>

<property name="beginPage" column="BEGIN_PAGE"/>

<property name="endPage" column="END_PAGE"/>

</joined-subclass>

<joined-subclass name="Book" table="BOOK">

<key column="PUBLICATION_ID"/>

<property name="price" column="PRICE"/>

</joined-subclass>

</class>

September 25, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

One Table Per Concrete Class

<class name="Publication">

<id name="id" type="long" column="PUBLICATION_ID">

<generator class="sequence"/>

</id>

<property name="title" column="TITLE"/>

<property name="year" column="YEAR"/>

<union-subclass name="Article" table="ARTICLE">

<property name="beginPage" column="BEGIN_PAGE"/>

<property name="endPage" column="END_PAGE"/>

</union-subclass>

<union-subclass name="Boook" table="BOOK">

<property name="price" column="PRICE"/>

</union-subclass>

</class>

September 25, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Using Annotations

 Java annotations have been

introduced in Java 5

 Enterprise Java Beans 3.0

includes Java Persistence API

 Uses Java annotations instead of

XML descriptors to capture

mappings

 Standardises object-relational

mappings

 Hibernate implements JPA

public class Author {

@Id @GenerateValue

private long id;

private String name;

private Date birthday;

@ManyToMany(fetch=FetchType.EAGER)

@JoinTable(

name="PUBLICATIONSAUTHORS",

joinColumns=@JoinColumn(

name="AUTHOR_ID",

referencedColumnName="id"),

inverseJoinColumns=@JoinColumn(

name="PUBLICATION_ID",

referencedColumnName="id")

)

)

private Set<Publication> pubs;

}

September 25, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Use of Database and Programming Language

Mapping 3

Simulation

(the normal programming activity)

Database

Program Real World

September 25, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Complete Computational Environments

 All data supported consistently whatever happens

 Programmers only have to understand one model and

maintain one mapping

Mapping 1

Simulation

(the normal programming activity)

Program Real World

September 25, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Java Programming Language

 Powerful object model

 Strong typing

 Automatic storage management

 Concurrency support

 Objects do not outlive execution of virtual machine

 Java object serialisation

September 25, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Java Object Serialisation

 Stores and retrieves objects in serial form

 Maintain type safety

 Extensible mechanism
 provide default mechanism

 per class implementation for customisation

 allow object to define its external format

 Persistence by reachability handles complex objects

 Intention
 data exchange

 "lightweight persistence"

 object archiving for later use by same program

September 25, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Java Object Serialisation Framework

 Interfaces for persistent object
 Serializable

 Externalizable

 Object streams to handle output and input
 ObjectOutputStream

 ObjectInputStream

 Interfaces defining output and input
 ObjectOutput extends DataOutput

 ObjectInput extends DataInput

September 25, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Java Object Serialisation

 No special methods have to be implemented

 Method writeObject of class ObjectOutputStream

 serialises objects

 traverses references to other objects in the object graph

 uses handles to preserve sharing and circular references

 Type information is stored together with objects

 Entire object graphs are read and written at same time

 Special handling is only required for
 arrays

 enum constants

 objects of type Class, ObjectStreamClass and String

September 25, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Java Object Serialisation

 A serialisable class must do the following
 implement the java.io.Serializable interface

 identify the fields that should be serialisable

 non-transient and non-static fields are serialised by default

 use the serialPersistentField member or the transient keyword

 have access to the no-argument constructor of its first non-
serialisable superclass

 Optionally, the class can define the following methods
 writeObject controls saved data or appends information

 readObject reads data corresponding to writeObject

 writeReplace nominates a replacement object to be written

 readResolve designates a replacement object when reading from
the input stream

September 25, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Java Object Serialisation Example

public class Address extends Serializable {

// Class Definition

}

// Serialise an object

FileOutputStream f = new FileOutputStream("tmp");

ObjectOutput out = new ObjectOutputStream(f);

out.writeObject(new Address());

out.flush();

out.close();

// Deserialise an object

FileInputStream f = new FileInputStream("tmp");

ObjectInput in = new ObjectInputStream(f);

Address address = (Address) in.readObject();

in.close();

September 25, 2009 29Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Versioning of Serialisable Objects

 Simple versioning of serialised objects supported

 Bidirectional communication between versions of a class

 Evolved class is responsible to maintain contract

established by non-evolved class
 evolved class must not break assumptions about the interface

provided by original version

 later version must provide sufficient and equivalent information to
allow earlier version to continue to satisfy non-evolved contract

 Compatible changes are changes that do not affect the

contract between the class and its callers

 Field serialVersionUID to identifies class version

September 25, 2009 30Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Incompatible and Compatible Changes

 Delete fields

 Move classes within the hierarchy

 Change non-static fields to static or

non-transient fields to transient

 Change declared type of a field

 Change writeObject and

readObject methods

 Change class from Serializable

to Extenalizable or vice-versa

 Change from non-enum type to

enum type

 Remove either Serializable or

Extenalizable

 Adding writeReplace or

readResolved method

 Add fields

 Add classes

 Remove classes

 Adding writeObject or

readObject method

 Remove writeObject or

readObject method

 Add Serializable

 Change access to a field

 Change static fields to non-static or

transient fields to non-transient

September 25, 2009 31Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Problems of Java Object Serialisation

 Not orthogonal
 serialisable classes need to implement a special interface

 Not complete
 class definition is not serialised along with objects

 problems with evolution and versioning

 Not persistent
 object identity is lost

 relationship between static and instance variables is lost

 Not scalable
 entire object graphs are serialised and deserialised

 Not transactional, recoverable nor concurrent

September 25, 2009 32Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Problems of Object Identity

 If two object graphs are stored in separate serialisations,

common substructures are duplicated when deserialised

 Similar effect occurs if a program re-reads data structure

while holding parts of the original structure in memory

 Programmer must take great care when hashing objects

Student

John

Student

Fred

Student

Mary

Course

OODB

Course

MPIS

September 25, 2009 33Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistent Programming Languages

 Orthogonal persistence
 all objects may be made persistent

 Completeness or transitivity
 everything needed to use persistent data must be preserved

 object behaviour must also be preserved

 persistence by reachability from named, persistent root objects

 Persistence independence
 indistinguishable whether code operating on transient or persistent

data

 semantics of the language must not change

 minimise what programmers have to learn to use persistence

September 25, 2009 34Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

PJama

 Persistent Java (PJama)
 University of Glasgow

 Sun Microsystems

 Assumptions
 Java is used as implementation language for many applications

 many applications will require long-term data management

 Goals
 Orthogonality, persistence independence, durability, scalability,

schema evolution, platform migration, endurance, openness,
transactional, performance

September 25, 2009 35Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

PJama Architecture

 Standard Java applications

 Persistence is provided by a

modified Java virtual machine

 object faulting

 promotion to persistence

 recoverable and transactional

operation

 Sphere

 persistent object store

 general purpose

 supports disk garbage collection,

evolution, …

Disk Disk Disk

Sphere

Store Adapter

Combined Object

Cache and Garbage

Collector Heap

Modified JVM

Java Application

September 25, 2009 36Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Creating Persistent Data

public class Department {

...

public static void main (String[] args) {

// start transaction

Course c = new Course("OODB");

Person p = new Person("Fred");

try {

PJavaStore pjs = PJavaStore.getStore();

pjs.newPRoot("OODB", c);

} catch (PJSException e) {

...

}

// implicit commit

}

}

September 25, 2009 37Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistence Independence

Hashtable courses = new Hashtable();

try {

PJavaStore pjs = PJavaStore.getStore();

pjs.newPRoot("Courses", courses);

} catch (PJSException e) {

...

}

...

Student student = new Student("Fred");

Course oodb = new Course("Object Oriented Databases");

Course webeng = new Course("Web Engineering");

courses.add(oodb.getTopic(), oodb);

oodb.attendedBy(student);

webeng.attendedBy(student);

...

courses.add(webeng.getTopic(), webeng);

...

September 25, 2009 38Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Accessing Persistent Objects

...

try {

PJavaStore pjs = PJavaStore.getStore();

Hashtable courses = (Hashtable) pjs.getPRoot("courses");

} catch (PJSException e) {

...

}

...

Course oodb = (Course) courses.get("Object Oriented Databases");

oodb.display();

...

September 25, 2009 39Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Achievements of PJama

 Type safety
 class information also stored in the persistent store

 direct or indirect object access through named persistent roots

 matching then performed of expected type and actual type

 Orthogonality
 achieved approximation good enough for many applications

 open issues with JDBC, CORBA and java.lang.Thread

 Persistence independence
 no changes to language, core classes or compiler

 persistence provided via additional API consisting mainly of methods
of class PJavaStore

September 25, 2009 40Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Achievments of PJama

 Durability
 recovery points through explicit "stabilize" calls

 Endurance
 Issues with recovery, schema evolution and platform migration that

require application to be restarted

 Transactional
 simple default model with implicit start and commit

 different transaction models possible through specialisation of the
class TransactionShell

 Performance
 modified JVM/JIT is 15%-20% slower than unmodified JVM/JIT

September 25, 2009 41Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Literature

 Christian Bauer and Gavin King: Java Persistence with

Hibernate, Manning Publications 2006

 M. Atkinson: Persistence and Java – A Balancing Act,

In: Proceedings of Conference on Objects and Databases,

Springer Verlag, 2000

September 25, 2009 42Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Next Week
db4o: Part 1

• Managing Databases, Storing and Retrieving Objects

• Query by Example, Native Queries, SODA

• Simple and Complex Objects, Activation, Transactions

September 25, 2009 43Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

