ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Object-Oriented Databases
Version Models

« Temporal Databases
* Engineering Databases

Software Configuration Systems

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Overview

= Various version models have been proposed to meet

challenges from application domains
temporal databases

computer-aided design and computer-aided manufacturing

software configuration and software engineering environments
= Evolution of version models

very simple approaches at first

complex and heterogeneous models emerged

several efforts to unify terminology and define generic models

= Association with object-oriented databases

version models as motivation for object-oriented databases
some object-oriented databases provide versioning support

October 16, 2009

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Versioned Object

= Concept that has a number of states associated with it

= Different levels of granularity
entire files
individual tuples of a relation
attributes of a class in object-oriented programming
objects in object-oriented systems

= Each version is a possible representation of the object,
corresponding directly to one of its states

= |nterpretation of object states depends on application of
version model

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Version Organisations

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

References

: /\ generic : /\
Vv Vg ————F— > v Y,
2 /3\A specific Z\A 3

..

= Specific reference
references single version of object directly

= Generic reference
references entire object
has to be dereferenced to a version when traversed

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH I_f !

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Storage Strategies

= Representing versions at the physical level
storing complete versions of objects
storing changes or deltas between versions

= Delta-based approaches come in several variations
forward and backward deltas
state-based and operation-based deltas

= Storage and retrieval performance of approaches

approaches based on complete versions perform well when changes
between versions are substantial

delta-based approaches perform well when data changes little, but is
not suited to store parallel versions

space versus time performance

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

! !
ETH -

Eidgendssische Technische Hochschule Zirich I n I
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Operation and Interaction Models

= QOperations control evolution of versions of single objects
create a new version of an object

branch a parallel version of an object

merge two parallel versions of an object
delete a version of an object

= |nteraction or transaction models support working with
complex objects and objects graphs
automatic versioning is transparent to the user

library model uses check-out and check-in high-level operations
long running and nested transactions

October 16, 2009

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Queries and Configurations

= Queries over versioned objects involve additional
constraints to select correct representations

= Various implementations exist
configurator evaluates rules against versioned object network
declarative queries express constraints in extended language
logical unification based on feature logic

= Dereferencing of generic references
query evaluator needs to select specific version of an object
main derivation guides generic access for parallel versions
active versions guide generic access for sequential versions

main derivation and active versions can be used in conjunction to
dereference a generic reference

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Temporal Databases

= One of the first application domains for version models
= Manage different flavours of time-dependent data

= Vast field of research with numerous approaches
conceptual models
data models
storage models
temporal algebras
guery languages

= Research in temporal databases done mostly based on
relational databases systems

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Time In Databases

= Different types of time can be used to characterise
temporal data

= Transaction, registration or physical time

captures when values were stored in the database
AS-OF operation

= Valid or logical time

used to express when values existed in real world
WHEN operation

= User-defined time
all aspects of time not covered by other two notions of time

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH I_f !

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Classification of Temporal Databases

= Static or snapshot database
conventional database
does not manage temporal data

= Static roll-back database
keeps track of transaction time
supports AS-OF operation

= Historical database
keeps track of valid time
supports WHEN operation

= Temporal database

keeps track of both transaction and valid time
supports both As-oF and WHEN operation

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

[
I nf Informatik
Computer Science

Representing Temporal Data

Object Versioning

Attribute Versioning

= object is extended with attribute = each attribute is extended with
capturing temporal dimension

= can be realised without violating = requires non-first normal form
the relational first normal form

temporal information

NF2 relational systems

Employee | Office | Salary Tg T Employee | Office Salary
Anne A1l2 5500 2000 | now Anne Al2 (5500, 2000, now)
Bob B 34 4000 2002 | 2003

Bob s34 | (4000,2002,2003)
Bob B34 |5500 |2003 | now (5500, 2003, now)
Charles C 56 6700 1995 | 2000 (6700, 1995, 2000)
Charles C 56 7500 2000 | 2006 Charles C 56 (7500, 2000, 2006)
Charles | C56 |7000 | 2006 | now (7000, 2006, now)
Denise B34 | 3000 1990 | 1995 _ (3000, 1990, 1995)

Denise B 34 ’ ’
Denise B34 |5300 |1995 | 2002 (5300, 1995, 2002)

October 16, 2009

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH I_f !

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Conceptual and Data Models

= Early approaches extended existing models such as the
relational model or the E/R model

= Bitemporal Conceptual Data Model (BCDM)
tuple versioning
implemented using four additional columns per tuple

transaction time and valid time with special "until changed" and
"now" values to indicate if a tuple is current

guery language TSQL2 is an extension of SQL that introduces a
VALIDTIME and WHEN clause

TSQL2 has been integrated into SQL3 as SQL/Temporal

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Homogeneous and Heterogeneous Models

= Temporal data model is homogeneous if the temporal
domain does not vary from one attribute of an object to
another

= All models that use tuple versioning are homogeneous

= Heterogeneous models can suffer from two anomalies

If a horizontal anomaly Is present, a versioned object is spread
across several records in different data sets

If a vertical anomaly is present, a versioned object is spread across
several records of the same data set

= Anomalies also apply to object-oriented databases on the
physical level

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Storage Models

= Temporal relation can be viewed
as tree-dimensional data /
structure /

sequence of relations

data cube

= Implemented using a two level /
store structures /

primary store contains current
versions which satisfy all non-temporal
gueries

history store hold the remaining
history versions

= Traditional access methods
cannot be used on such a
storage model

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Two-Level Storage Structures

< N /y
< T
Reverse Chaining Accession Lists
o
C N
_m
> > o |l
n O
S o
_______________________ < @) N
~ | N e -0
T~ c_:US ©
20
S
Clustering Stacked Versions

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Engineering Databases

= Developed for engineering application domains
Computer-Aided Design (CAD)
Computer-Aided Manufacturing (CAM)

= Support the development and maintenance of products

= Requirements

data structures and concurrency control concepts to define and
manage complex, often hierarchical, design objects

versioning support for complex objects that supports iterative
development by alternatives and trial-and-error experiments
= Two dimensional version models

linear revision dimension
non-sequential variation dimension

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Design Space Version Model

= Modelling primitives
component hierarchies (is-a-part-of)
version histories (is-a-kind-of, is-derived-from)
configurations combine component hierarchies and version histories

equivalences capture different representations of a “multi-facetted”
design object

= Design management operations
identifying the current version within a version history
describing dynamic configurations
managing the movement of objects among workspaces
change and constraint propagation
Inheriting attributes from related design objects

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Early Approaches

= Extension of IBM System R relational database system
with long fields and complex objects

= Long fields used to store and retrieve unstructured

iInformation of arbitrary length
data is written and read using extended cursor concept
iteration over stream representing data of a long field

= Complex objects manage several tuples as an object
new column types COMP_OF, INDETIFIER and REF introduced

component tuples reference other tuples of the same object or root
tuple of another object

concurrent access based on check-out/check-in model

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Software Configuration Systems

= Developed for software development
Software Configuration Management (SCM)
Software Engineering Environments (SEE)

= Software configuration systems manage product directly
engineering databases only manage a product representation
goal of fully automating process of building final product

= Also built around concept of design objects
source code files
modules of programs

= Management of references and dependencies more
complex as hidden inside source code files

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Product Space

= Describes a product is organised
does not take versioning into account
several design choices available
can be represented in different ways

= Software objects

requirements specifications, designs, documentations, program
code, test plans, test cases, user manuals, project plans, ...

object identification
object granularity
object representation

= Relationships
composition relationships
dependency relationships

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Product Space Representation

= Logical structure Py
module main imports a and b £,
module a and b both import ¢ o

product space may be represented in different ways

main module

- Flle SyStem - = import
each module is represented by multiple files

dependencies and build information .
are stored in separate file O

Ellaflsfislsnelseelaae
sys main.¢ main.o main.ex2 a.h a.c a.o b.h b.¢ b.c c.h c.¢ ¢.0

Reidar Conradi and Bernhard Westfechtel: Version Models for Software Configuration Management, In: ACM Computing Surveys, 30(2), 232-282, 1998

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Product Space Representation

= Data model with type relationships
composition tree with files as leaves
dependencies are represented within tree

build information can be computed from composition and
dependency relationships

Q system |:| module ~ > dependency —= composition relationship

Fai

" header () body G

compiled code - executable

Reidar Conradi and Bernhard Westfechtel: Version Models for Software Configuration Management, In: ACM Computing Surveys, 30(2), 232-282, 1998

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Product Space Representation

= Without spanning tree
all files are summarised as one object
only source dependencies are represented
directly corresponds to the logical structure

main

|:| module

== == dependency

long attributes:
a —— —_— - b
"] -
~—— - '« _.! header
= - T compiled code

i
[e

(D body

Reidar Conradi and Bernhard Westfechtel: Version Models for Software Configuration Management, In: ACM Computing Surveys, 30(2), 232-282, 1998

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Version Space

= Version model defines how objects are versioned
a versioned object is a container for a set of versions
common properties shared by a versioned object (invariants)

differences (deltas) between versions of a versioned object
symmetric deltas

directed deltas (changes)
= Definition of version set
extensional versioning enumerates all members of the version set
Intensional versioning uses predicate defining version set members
= Intent of evolution
revisions keep track of the history

variants capture alternatives
versions can also be used to support cooperation and collaboration

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

[
ETH informatik
Eidgendssische Technische Hochschule Ziirich Computer Science

Swiss Federal Institute of Technology Zurich

Version Space Representation

O version cluster
|
G rap h [version

o8 db

~ -

~ - - § ~ SunViews -

v - -
i “c:p - c::> “t::a R,
nix indow ‘n. racle Infﬂm;x- ase

~. Dos

£

pl.m:

(Unix, X11,0racle) (D0S, Windows , dbase)
= Grid b
[] wWs
Oracle S ® (Unix,¥11,0racle)
Windows

Informix -

I
|
|
cunviews |
|
I

dbase T o e e e e e e e e - = |

Dos Unix VHMS

Reidar Conradi and Bernhard Westfechtel: Version Models for Software Configuration Management, In: ACM Computing Surveys, 30(2), 232-282, 1998

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

Literature

= Richard T. Snodgrass and llsoo Ahn: A Taxonomy of
Time in Databases, In: Proceedings of ACM SIGMOD,
236-246, 1985

= Randy H. Katz: Toward a Unified Framework for Version
Modeling in Engineering Databases,
In: ACM Computing Surveys, 22(4), 375-409, 1990

= Reidar Conradi and Bernhard Westfechtel: Version
Models for Software Configuration Management,
In: ACM Computing Surveys, 30(2), 232-282, 1998

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Next Week

Storage and Indexing

* Type Hierarchy Indexing
« Aggregation Path Indexing
* Collection Operations

October 16, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

