
Object-Oriented Databases
ODMG Standard

• Object Model and Object Definition Language

• Object Query Language (OQL)

• Programming Language Bindings

October 30, 2009 1Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Development of OODBMS

 Many systems closely related to programming languages
 Versant, Ontos, ObjectStore, Objectivity (C++)

 GemStone (Smalltalk)

 Early versions had no query language support
 ObjectStore had limited selection-based queries

 O2 developed at INRIA (France) with large funding from

European research projects
 took more of a database approach

 intended to be language independent

 lot of research on query languages

 interests also in interface and development tools support

October 30, 2009 2Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Standards for Object Data Management

 Object Management Group (OMG)
 architectures and tools to develop object-oriented systems

 distributed object management

 best known for Unified Modeling Language (UML)

 Object Data Management Group (ODMG)
 data management support

 complementary to OMG

 ODMG data model based on OMG object model

October 30, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Object Data Management Group (ODMG)

 ODMG formed very early in development of OODBMS

 Informal standards body involving all major vendors
 initiated in 1991 by Rick Cattell of SunSoft

 initially ODMG comprised five people from OODBMS vendors

 Promote portability and interoperability across products

 Not developing a standard OODBMS product
 products will vary in terms of languages, tools, interfaces,

performance, etc.

 products may be tailored to application domains, e.g. version
management for Computer-Aided Software Engineering (CASE)

October 30, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

ODMG Standard

 Object Model

 Object Definition Language (ODL)

 Object Query Language (OQL)

 Language bindings
 C++ Binding

 Smalltalk Binding

 Java Binding

October 30, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

ODMG Object Model

 Based on the OMG object model

 Basic modelling primitives
 object unique identifier

 literal no identifier

 Object state defined by the values carried for a set of

properties, i.e. attributes or relationships

 Object behaviour defined by the set of operations that can

be executed

 Objects and literals are categorised by their type which

defines common properties and common behaviour

October 30, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Types

 Specification
 properties, i.e. attributes and relationships

 operations

 exceptions

 Implementation
 language binding

 a specification can have more than one implementation

October 30, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Type Specifications

 Interface
 defines only abstract behaviour

 interface Employee {...};

 Class
 defines both abstract behaviour and abstract state

 class Person {...};

 Literal
 defines abstract state

 struct Complex { float real; float imaginary; };

October 30, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Type Implementation

 Representation
 data structure

 derived from type's abstract state by the language binding

 Methods
 procedure bodies

 derived from type's abstract behaviour by the language binding

 also private methods with no counterpart in specification

October 30, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Subtyping and Inheritance

 Two types of inheritance relationships

 IS-A relationship
 inheritance of behaviour

 multiple inheritance, name overloading disallowed

 interface Professor : Employee {...};

 EXTENDS relationship
 inheritance of state and behaviour

 single inheritance

 class EmplPers extends Person : Employee {...};

October 30, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Extents

 Extent of a type is the set of all active instances
 assume class Person

 extent of class Person would be the current set of all person objects
in the data management system

 Extents can be maintained automatically

October 30, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Collections

 Supports both collection objects and collection literals
 set unordered, no duplicates

 bag unordered, duplicates

 list ordered, elements can be inserted

 array ordered, elements can be replaced

 dictionary maps keys to values

 Collection objects
 Set<t>, Bag<t>, List<t>, Array<t>, Dictionary<t,v>

 Collection literals
 set<t>, bag<t>, list<t>, array<t>, dictionary<t,v>

October 30, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Collections

 Subset containment relation defined only over sets

 Operations union, intersection and difference defined only

over sets and bags

 No constraints over collections

October 30, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Collections

interface Collection : Object {

exception InvalidCollectionType{};

exception ElementNotFound{ Object element; };

boolean is_empty();

...

boolean contains_element(in Object element);

void insert_element(in Object element);

void remove_element(in Object element) raise (ElementNotFound);

...

Iterator create_iterator(in boolean stable);

...

boolean query(in string oql_predicate, inout Collection result);

};

October 30, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Sets and Bags

class Set : Collection {

attribute set<t> value;

Set create_union(in Set other_set);

Set create_intersection(in Set other_set);

Set create_difference(in Set other_set);

boolean is_subset_of(in Set other_set);

boolean is_proper_subset_of(in Set other_set);

...

};

class Bag : Collection {

attribute bag<t> value;

unsigned long occurrences_of(in Object element);

Bag create_union(in Bag other_bag);

Bag create_intersection(in Bag other_bag);

Bag create_difference(in Bag other_bag);

...

};

October 30, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Relationships

 All relationships are binary
 many-to-many relationships have a collection for both the type of

the relationship and its inverse

 many-to-one relationships have a collection for the type of the
relationship and class for its inverse

 one-to-one relationships have a class both for the type of the
relationship type and for its inverse

 No support for ternary (or higher) relationships or

relationship attributes
 can be simulated by creating classes to represent relationship tuples

 System maintains referential integrity

October 30, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistence

 Persistence by reachability

 Database gives access to global names
 explicitly named root objects

 types defined in schema

 named extents of types

October 30, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Other Concepts Supported

 Database operations

 Locking and concurrency control

 Transactions

 Access to metadata

 Built-in structured literals and objects
 dates

 times

 timestamps

 intervals

 ...

October 30, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Object Definition Language (ODL)

 Object-oriented design and specification language
 supports semantic constructs of ODMG object model

 programming language independent, extensible and practical

 compatible to OMG Interface Definition Language (IDL)

 ODL object class definition

 extent and key of a class can be specified optionally

 relationships specify inverse to maintain referential integrity

 methods signatures are implemented by language binding

October 30, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

class name [(extent name, key name)] {

{ exception name { { type name } } }

{ attribute type name }

{ relationship type name inverse relationship }

{ type name ({ (in | out | inout) type name }) [raises ({ exception })] }

}

Example Class Hierarchy

+getName(): String

+setName(name: String)

+getBirthday(): Date

+setBirthday(birthday: Date)

+getAge(): int

name: String

birthday: Date

Author

+getTitle(): String

+setTitle(title: String)

+getYear(): int

+setYear(year: int)

title: String

year: int

Publication

+getBeginPage(): int

+setBeginPage(page: int)

+getEndPage(): int

+setEndPage(page: int)

beginPage: int

endPage: int

Article

+getPrice(): double

+setPrice(price: double)

price: double

Book

0..* 0..*
authors

October 30, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

ODL Example

class Author (extent Authors) {

attribute string name;

attribute date birthday;

relationship set<Publication> authors inverse Publication::authored_by;

integer get_age();

};

class Publication (extent Publications) {

attribute string title;

attribute integer year;

relationship list<Author> authored_by inverse Author::authors;

};

class Article extends Publication (extent Articles) {

attribute unsigned short begin_page;

attribute unsigned short end_page;

};

class Book extends Publication (extent Books) {

attribute double price;

};

October 30, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Object Query Language (OQL)

 Based on ODMG Object Model and SQL-92

 collections can be extents or expressions that evaluate to collection

 names can be used to denote a typical member of a collection

 Path expressions to navigate complex objects
 person.spouse.address.street.name

 Not computationally complete
 rather simple to use query language

 No explicit update operators
 but can invoke update operations on objects

October 30, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

select list of values

from list of collections and typical members

where condition

Basic Select Statement

 Find the titles of all publications with more than one author

that were published after 1995

 Find the titles of all publications authored by Tilmann

Zäschke

October 30, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

select p.title

from Publications p

where p.year > 1995

and count(p.authored_by) > 1

select a.authors.title

from Authors a

where a.name = "Tilmann Zaeschke"

select p.title

from Authors a, a.authors p

where a.name = "Tilmann Zaeschke"

Illegal as the “dot” operator cannot be

applied to a collection of objects

Correct solution based on correlated

variables

Return Types

 Queries return sets, bags or lists
 as a default, queries return a bag

 queries with DISTINCT return a set

 queries with ORDER BY return a list

October 30, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

select first: p.authored_by[1], p.title, p.year

from Publications p

select distinct a.name

from Authors a

Bag<Struct { Author first, string title, integer year }>

Set<Struct { string name }>

select p.title

from Publications s

order by p.year desc

List<Struct { string name }>

Subqueries

 Subqueries are mainly expressed in FROM clauses

 Find the names of all co-authors of Michael Nebeling

 Find the titles of the articles that were published in the

same year at the book on the ODMG 3.0 standard

October 30, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

select distinct a.name

from (select mp

from Authors m, m.authors mp

where m.name = "Michael Nebeling") p, p.authored_by a

select p.title

from Articles p, (select o.year

from Books o

where o.title = "ODMG 3.0") y

where p.year in y

Universal and Existential Quantification

 Boolean expressions that can be used in WHERE clauses

 Find the names of authors who have written a book that

costs less than 20 €

 Find the names of authors who have not published

anything since 2000

October 30, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

select a.name

from Authors a

where exists b in Books:

b.price < 20 and b in a.authors

select a.name

from Authors a

where for all p in a.authors:

p.year <= 2000

Collection Expressions

 Aggregate operators
 AVG, SUM, MIN, MAX, and COUNT apply to collections that have a

compatible member type

 Operations for sets and bags
 UNION, INTERSECTION and EXCEPT

 inclusion tests (subset, superset)

 Special operations for lists

 Simple coercions
 a collection of one element can be coerced to that element using the
ELEMENT operator

 Flattening a collection of collections

October 30, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

“ODMG 4.0”

 ODMG was dissolved in 2001

 OMG obtained rights to ODMG 3.0 in 2003

 OMG Object Database Technology Working Group

(ODBTWG) was founded in 2005 in response to renewed

interest in object-oriented databases

 First white paper proposes object calculus based on

abstract store model and stack-based queries

October 30, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Literature

 R. G. Cattell, Douglas K. Barry, Mark Berler, Jeff Eastman,

David Jordan, Craig Russell, Olaf Schadow, Torsten

Stanienda, Fernando Velez (Editors): The Object Data

Standard: ODMG 3.0, Morgan Kaufmann 2000

 OMG Object Database Technology Working Group: Next-

Generation Object Database Standarization, White

Paper, September 2007

October 30, 2009 29Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Next Week
Commercial OODBMS: Versant

• Versant Object Database for Java

• Java Versant Interface (JVI)

• Versant Query Language (VQL)

October 30, 2009 30Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

