
Object-Oriented Databases 
Version Models

• Temporal Databases

• Engineering Databases

• Software Configuration Systems

October 16, 2009 1Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Overview

 Various version models have been proposed to meet 

challenges from application domains
 temporal databases

 computer-aided design and computer-aided manufacturing

 software configuration and software engineering environments

 Evolution of version models
 very simple approaches at first

 complex and heterogeneous models emerged

 several efforts to unify terminology and define generic models

 Association with object-oriented databases
 version models as motivation for object-oriented databases

 some object-oriented databases provide versioning support

October 16, 2009 2Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Versioned Object

 Concept that has a number of states associated with it

 Different levels of granularity
 entire files

 individual tuples of a relation

 attributes of a class in object-oriented programming

 objects in object-oriented systems

 Each version is a possible representation of the object, 

corresponding directly to one of its states

 Interpretation of object states depends on application of 

version model

October 16, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Version Organisations

Set List Tree DAG

v1

v3

v2

v5

v4

v1

v3

v2

v5

v4

v1

v3v2

v4 v5

v1

v3v2

v4 v5

October 16, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



References

 Specific reference
 references single version of object directly

 Generic reference
 references entire object

 has to be dereferenced to a version when traversed

v1

v3v2

v4 v5

o1 v1

v3v2

v4

o2

generic

specific

October 16, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Storage Strategies

 Representing versions at the physical level
 storing complete versions of objects

 storing changes or deltas between versions

 Delta-based approaches come in several variations
 forward and backward deltas

 state-based and operation-based deltas

 Storage and retrieval performance of approaches
 approaches based on complete versions perform well when changes 

between versions are substantial

 delta-based approaches perform well when data changes little, but is 
not suited to store parallel versions

 space versus time performance

October 16, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Operation and Interaction Models

 Operations control evolution of versions of single objects
 create a new version of an object

 branch a parallel version of an object

 merge two parallel versions of an object

 delete a version of an object

 Interaction or transaction models support working with 

complex objects and objects graphs
 automatic versioning is transparent to the user

 library model uses check-out and check-in high-level operations

 long running and nested transactions

October 16, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Queries and Configurations

 Queries over versioned objects involve additional 

constraints to select correct representations

 Various implementations exist
 configurator evaluates rules against versioned object network

 declarative queries express constraints in extended language

 logical unification based on feature logic

 Dereferencing of generic references
 query evaluator needs to select specific version of an object

 main derivation guides generic access for parallel versions

 active versions guide generic access for sequential versions

 main derivation and active versions can be used in conjunction to 
dereference a generic reference

October 16, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Temporal Databases

 One of the first application domains for version models

 Manage different flavours of time-dependent data

 Vast field of research with numerous approaches
 conceptual models

 data models

 storage models

 temporal algebras

 query languages

 Research in temporal databases done mostly based on 

relational databases systems

October 16, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Time in Databases

 Different types of time can be used to characterise 

temporal data

 Transaction, registration or physical time
 captures when values were stored in the database

 AS-OF operation

 Valid or logical time
 used to express when values existed in real world

 WHEN operation

 User-defined time
 all aspects of time not covered by other two notions of time

October 16, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Classification of Temporal Databases

 Static or snapshot database
 conventional database

 does not manage temporal data

 Static roll-back database
 keeps track of transaction time

 supports AS-OF operation

 Historical database
 keeps track of valid time

 supports WHEN operation

 Temporal database
 keeps track of both transaction and valid time

 supports both AS-OF and WHEN operation

October 16, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Representing Temporal Data

Object Versioning

 object is extended with attribute 

capturing temporal dimension

 can be realised without violating 

the relational first normal form

Attribute Versioning

 each attribute is extended with 

temporal information

 requires non-first normal form 

NF2 relational systems

Employee

Charles C 56

Denise B 34

Anne A 12

Bob B 34

Office Salary

(6700, 1995, 2000)

(7500, 2000, 2006)

(7000, 2006, now)

(3000, 1990, 1995)

(5300, 1995, 2002)

(5500, 2000, now)

(4000, 2002, 2003)

(5500, 2003, now)

Employee

Charles C 56

Denise B 34

Anne A 12

Bob B 34

Office Salary

5500

4000

TS TE

2000 now

2002 2003

Bob B 34 5500 2003 now

Charles

Charles

Denise

C 56

C 56

B 34

6700 1995 2000

7500 2000 2006

7000 2006 now

3000 1990 1995

5300 1995 2002

October 16, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Conceptual and Data Models

 Early approaches extended existing models such as the 

relational model or the E/R model

 Bitemporal Conceptual Data Model (BCDM)
 tuple versioning

 implemented using four additional columns per tuple

 transaction time and valid time with special "until changed" and 
"now" values to indicate if a tuple is current

 query language TSQL2 is an extension of SQL that introduces a 
VALIDTIME and WHEN clause

 TSQL2 has been integrated into SQL3 as SQL/Temporal

October 16, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Homogeneous and Heterogeneous Models

 Temporal data model is homogeneous if the temporal 

domain does not vary from one attribute of an object to 

another

 All models that use tuple versioning are homogeneous

 Heterogeneous models can suffer from two anomalies
 if a horizontal anomaly is present, a versioned object is spread 

across several records in different data sets

 if a vertical anomaly is present, a versioned object is spread across 
several records of the same data set

 Anomalies also apply to object-oriented databases on the 

physical level

October 16, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Storage Models

 Temporal relation can be viewed 
as tree-dimensional data 
structure

 sequence of relations

 data cube

 Implemented using a two level 
store structures

 primary store contains current 

versions which satisfy all non-temporal 

queries

 history store hold the remaining 

history versions

 Traditional access methods 
cannot be used on such a 
storage model

October 16, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Two-Level Storage Structures

Reverse Chaining Accession Lists

Clustering Stacked Versions

C
e
ll

u
la

r 
C

lu
s
te

ri
n

g

(C
e
ll 

S
iz

e
 C

=
3
)

October 16, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Engineering Databases

 Developed for engineering application domains
 Computer-Aided Design (CAD)

 Computer-Aided Manufacturing (CAM)

 Support the development and maintenance of products

 Requirements
 data structures and concurrency control concepts to define and 

manage complex, often hierarchical, design objects

 versioning support for complex objects that supports iterative 
development by alternatives and trial-and-error experiments

 Two dimensional version models
 linear revision dimension

 non-sequential variation dimension

October 16, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Design Space Version Model

 Modelling primitives
 component hierarchies (is-a-part-of)

 version histories (is-a-kind-of, is-derived-from)

 configurations combine component hierarchies and version histories

 equivalences capture different representations of a “multi-facetted” 
design object

 Design management operations
 identifying the current version within a version history

 describing dynamic configurations

 managing the movement of objects among workspaces

 change and constraint propagation

 inheriting attributes from related design objects

October 16, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Early Approaches

 Extension of IBM System R relational database system 

with long fields and complex objects

 Long fields used to store and retrieve unstructured 

information of arbitrary length
 data is written and read using extended cursor concept

 iteration over stream representing data of a long field

 Complex objects manage several tuples as an object
 new column types COMP_OF, INDETIFIER and REF introduced

 component tuples reference other tuples of the same object or root 
tuple of another object

 concurrent access based on check-out/check-in model

October 16, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Software Configuration Systems

 Developed for software development
 Software Configuration Management (SCM)

 Software Engineering Environments (SEE)

 Software configuration systems manage product directly
 engineering databases only manage a product representation

 goal of fully automating process of building final product

 Also built around concept of design objects
 source code files

 modules of programs

 Management of references and dependencies more 

complex as hidden inside source code files

October 16, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Product Space

 Describes a product is organised
 does not take versioning into account

 several design choices available

 can be represented in different ways

 Software objects
 requirements specifications, designs, documentations, program 

code, test plans, test cases, user manuals, project plans, …

 object identification

 object granularity

 object representation

 Relationships
 composition relationships

 dependency relationships

October 16, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Product Space Representation

October 16, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Reidar Conradi and Bernhard Westfechtel: Version Models for Software Configuration Management, In: ACM Computing Surveys, 30(2), 232-282, 1998

 Logical structure
 module main imports a and b

 module a and b both import c

 product space may be represented in different ways

 File system
 each module is represented by multiple files

 dependencies and build information
are stored in separate file



Product Space Representation

October 16, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Reidar Conradi and Bernhard Westfechtel: Version Models for Software Configuration Management, In: ACM Computing Surveys, 30(2), 232-282, 1998

 Data model with type relationships
 composition tree with files as leaves

 dependencies are represented within tree

 build information can be computed from composition and 
dependency relationships



Product Space Representation

 Without spanning tree
 all files are summarised as one object

 only source dependencies are represented

 directly corresponds to the logical structure

October 16, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Reidar Conradi and Bernhard Westfechtel: Version Models for Software Configuration Management, In: ACM Computing Surveys, 30(2), 232-282, 1998



Version Space

 Version model defines how objects are versioned
 a versioned object is a container for a set of versions

 common properties shared by a versioned object (invariants)

 differences (deltas) between versions of a versioned object

 symmetric deltas

 directed deltas (changes)

 Definition of version set
 extensional versioning enumerates all members of the version set

 intensional versioning uses predicate defining version set members

 Intent of evolution
 revisions keep track of the history

 variants capture alternatives

 versions can also be used to support cooperation and collaboration

October 16, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Version Space Representation

 Graph

 Grid

October 16, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Reidar Conradi and Bernhard Westfechtel: Version Models for Software Configuration Management, In: ACM Computing Surveys, 30(2), 232-282, 1998



Literature

 Richard T. Snodgrass and Ilsoo Ahn: A Taxonomy of 

Time in Databases, In: Proceedings of ACM SIGMOD, 

236-246, 1985

 Randy H. Katz: Toward a Unified Framework for Version 

Modeling in Engineering Databases,

In: ACM Computing Surveys, 22(4), 375-409, 1990

 Reidar Conradi and Bernhard Westfechtel: Version 

Models for Software Configuration Management, 

In: ACM Computing Surveys, 30(2), 232-282, 1998

October 16, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Next Week
Storage and Indexing

• Type Hierarchy Indexing

• Aggregation Path Indexing

• Collection Operations

October 16, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch


