
Object-Oriented Databases
db4o: Part 1

• Managing Databases, Storing and Retrieving Objects

• Query by Example, Native Queries, SODA

• Simple and Complex Objects, Activation, Transactions

October 2, 2009 1Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Introducing db4o

 Open source native object database for Java and .NET

 Key features
 No conversion or mapping needed

 No changes to classes to make objects persistent

 One line of code to store objects of any complexity

 Works in local or client/server mode

 ACID transaction model

 Object caching and integration with native garbage collection

 Automatic management and versioning of database schema

 Seamless Java or .NET language binding

 Small memory foot-print (single 2Mb library)

October 2, 2009 2Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

db4o Architecture

Database File/In-Memory Database

I/O Adapter (deprecated: Storage and Bin)

ACID Transactional Slots

Object Marshaller Class Index BTrees Field Index BTrees

Index Query Processor

SODA Query Processor

SODA Queries
Query by

Example
Native Queries

Class

Metadata

Reference

System

R
e

fle
c

to
r

API

Application

List<Author> authors = db.query(

new Predicate<Author>() {

public boolean match(Author author) {

return author.getName().startsWith("M");

}

}

);

October 2, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Example Class Hierarchy

+getName(): String

+setName(name: String)

+getBirthday(): Date

+setBirthday(birthday: Date)

+getAge(): int

name: String

birthday: Date

Author

+getTitle(): String

+setTitle(title: String)

+getYear(): int

+setYear(year: int)

title: String

year: int

Publication

+getBeginPage(): int

+setBeginPage(page: int)

+getEndPage(): int

+setEndPage(page: int)

beginPage: int

endPage: int

Article

+getPrice(): double

+setPrice(price: double)

price: double

Book

0..* 0..*

October 2, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Example Java Classes

public class Author {

private String name;

private Date birthday;

private Set<Publication> pubs;

public Author(String name) {

this.name = name;

this.pubs =

new HashSet<Publication>();

}

public String getName() {

return this.name;

}

public void setName(String name) {

this.name = name;

}

...

}

public class Publication {

private String title;

private int year;

private List<Author> authors;

public Publication(String title) {

this.title= title;

this.authors =

new ArrayList<Author>();

}

public String getTitle() {

return this.title;

}

public void setTitle(String title) {

this.title = title;

}

...

}

October 2, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Object Container

 Represents db4o databases

 supports local file mode or client connections to db4o server

 Owns one transaction
 all operations are executed transactional

 transaction is started when object container is opened

 after commit or rollback next transaction is started automatically

 Manages links between stored and instantiated objects
 manages object identities

 loading, updating and unloading of objects

 Lifecycle
 intended to be kept open as long as programs work against it

 references to objects in RAM will be discarded when closed

October 2, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Storing Objects

// create a publication

Publication article = new Publication("Concepts for Content Management");

// create authors

Author michael = new Author("Michael Grossniklaus");

Author moira = new Author("Moira C. Norrie");

// assign authors to publication

article.addAuthor(michael);

article.addAuthor(moira);

// store complex object

ObjectContainer db = Db4oEmbedded.openFile("test.db");

db.store(article);

 Store objects with method store of ObjectContainer

 Stores objects of arbitrary complexity

 Persistence by reachability

October 2, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Retrieving Objects

 db4o supports three query languages

 Query by Example
 simple method based on prototype objects

 selects exact matches only

 Native Queries
 expressed in application programming language

 type safe

 transformed to SODA and optimised

 Simple Object Data Access (SODA)
 query API based on the notion of a query graph

 methods for descending graph and applying constraints

October 2, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Query by Example

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// get author "Moira C. Norrie"

Author proto = new Author("Moira C. Norrie");

ObjectSet<Author> authors = db.queryByExample(proto);

for (Author author: authors) {

System.out.println(author.getName());

}

// get all publications

ObjectSet<Publication> publications = db.query(Publication.class);

for (Publication publication: publications) {

System.out.println(publication.getTitle());

}

October 2, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Native Queries

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// find all publications after 1995

ObjectSet<Publication> publications = db.query(

new Predicate<Publication>() {

public boolean match(Publication publication) {

return publication.getYear() > 1995;

}

}

);

for (Publication publication: publications) {

System.out.println(publication.getTitle());

}

October 2, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

SODA Queries

 Expressed using Query objects
 descend adds or traverses a node in the query tree

 constrain adds a constraint to a node in the query tree

 sortBy sorts the result set

 orderAscending and orderDescending

 execute executes the query

 Interface Constraint
 greater and smaller comparison modes

 identity, equal and like evaluation modes

 and, or and not operators

 startsWith and endsWith string comparisons

 contains to test collection membership

October 2, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

SODA Queries

 Find all publications published after 1995

 Find all publications of author "Moira C. Norrie"

Class: Publication.class

"year"

Greater: 1995

Class: Publication.class

"authors"

Contains: new Author("Moira C. Norrie")

October 2, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

SODA Queries

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// find all publications after 1995

Query query = db.query();

query.constrain(Publication.class);

query.descend("year").constrain(Integer.valueOf(1995)).greater();

ObjectSet<Publication> publications = query.execute();

for (Publication publication : publications) {

System.out.println(publication.getTitle());

}

// find all publications of author "Moira C. Norrie"

Query query = db.query();

query.constrain(Publication.class);

Author proto = new Author("Moira C. Norrie");

query.descend("authors").constrain(proto).contains();

ObjectSet<Publication> publications = query.execute();

for (Publication publication : publications) {

System.out.println(publication.getTitle());

}

October 2, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Updating Objects

 Update procedure for persistent object
 retrieve desired object from the database

 perform the required changes and modification

 store object back to the database by calling the store method

 Background
 db4o uses IDs to maintain connections between in-memory objects

and corresponding stored objects

 IDs are cached as weak references until database is closed

 fresh reference is required to update objects

 querying for objects ensures fresh reference

 creating and storing objects ensures fresh reference

 db4o uses reference to find and update stored object automatically
when store method is called

October 2, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Updating Objects

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieve existing object

Author michael = db.queryByExample(new Author("Michael Grossniklaus")).next();

// update object in memory

Calendar calendar = Calendar.getInstance();

calendar.set(1976, Calendar.JUNE, 22);

michael.setBirthday(calendar.getTime());

// update persistent object

db.store(michael);

October 2, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Deleting Objects

 Similar to updating objects
 fresh reference required

 established by querying or by creating and storing

 Method delete of ObjectContainer removes objects

 What happens to referenced objects?

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving author "Moira C. Norrie"

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next();

// deleting author "Moira C. Norrie"

db.delete(moira);

October 2, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Simple Structured Objects

 Storing of new objects using the store method

 object graph is traversed and all referenced objects are stored

 persistence by reachability

 Updating of existing objects using the store method

 by default update depth is set to one

 only primitive and string values are updated

 object graph is not traversed for reasons of performance

 Deleting existing objects using the delete method

 by default delete operations are not cascaded

 referenced objects have to be deleted manually

 cascading delete can be configured for individual classes

October 2, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Updating Simple Structured Objects

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving author "Moira C. Norrie"

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next();

// updating all publications

for (Publication publications: moira.getPublications()) {

publication.setYear(2007);

}

// storing author "Moira C. Norrie" has no effect on publications

db.store(moira);

// storing updated publications

for (Publication publications: moira.getPublications()) {

db.store(publication);

}

October 2, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Updating Simple Structured Objects

 Cascading updates can be configured per class using
method cascadeOnUpdate from ObjectClass

 Update depth can be configured
 method store(object, depth) from ExtObjectContainer

updates referenced fields to the given depth

 method updateDepth(depth) from ObjectClass defines a
sufficient update depth for a class of objects

 method updateDepth(depth) from Configuration sets global
update depth for all persisted objects

 Global update depth not flexible enough for real-world

objects having different depth of reference structures

October 2, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Deleting Simple Structured Objects

 Cascading deletes similar to cascading updates
 configured per object class

 method objectClass from CommonConfiguration

 method cascadeOnDelete from ObjectClass

 What happens if deleted objects referenced elsewhere?

// configuration of cascading deletes for Author objects

EmbeddedConfiguration config = Db4oEmbedded.newConfiguration();

config.common().objectClass(Author.class).cascadeOnDelete(true);

ObjectContainer db = Db4oEmbedded.openFile(config, "test.db");

// retrieving author "Moira C. Norrie"

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next();

// deleting author "Moira C. Norrie"

database.delete(moira);

October 2, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Deleting Simple Structured Objects

 Inconsistencies between in-memory and stored objects
 cache and disk can become inconsistent when deleting objects

 method refresh of ExtObjectContainer syncs objects

 restores memory objects to committed values on disk

delete() refresh()

October 2, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Object Hierarchies

 db4o handles complex object structures automatically
 hierarchies, composite hierarchies

 inverse associations

 inheritance and interfaces

 multi-valued attributes, arrays and collections

 Configuration of cascading operation applies

 db4o database-aware collections
 ArrayList4 and ArrayMap4 implement Collections API

 as part of transparent persistence/activation framework

 ActivatableArrayList, ActivatableHashMap, …

 complex object implementation becomes db4o dependant

October 2, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Transparent Persistence

 Make persistence transparent to application logic
 store objects in database once using the store method

 avoid more calls to store method as database manages objects

 Logic of the transparent persistence framework
 transparently persistent objects implement Activatable interface

 instances are initially made persistent using store method

 objects are bound to the transparent persistence framework when
stored or retrieved using the bind method

 upon commit, the transparent persistence framework scans for
modified persistent objects and implicitly invokes the store method

 Enabling transparent persistence

October 2, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

config.add(new TransparentPersistenceSupport());

Activation

 Activation controls instantiation of object fields
 object field values are loaded into memory only to a certain depth

when a query retrieves objects

 activation depth denotes the length of the reference chain from an
object to another

 fields beyond the activation depth are set to null for object references
or to default values for primitive types

 Activation occurs in the following cases
 method next is called on an ObjectSet retrieved in a query

 explicit object activation by activate from ObjectContainer

 a db4o collection element is accessed

 members of Java collections are activated automatically when
collection is activated

October 2, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Activation

addr oid

 Fields beyond activation depth

are not loaded into memory

 Weak references are used to

later activate these fields

 table instead of direct reference

 memory address mapped to persistent

id of inactive object

 Inactive objects are activated

using mapping table

Activation Depth

October 2, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Activation

 Activation depth trade-off
 if set to maximum, whole object graphs are loaded into memory for

every retrieved object and no manual activation needed

 if set to minimum, memory consumption is reduced to the lowest
level but all the activation logic is left to the application code

 Controlling activation
 default activation depth is 5

 methods activate and deactivate of ObjectContainer

 per class configuration

ObjectClass#minimumActivationDepth(minDepth)

ObjectClass#maximumActivationDepth(maxDepth)

ObjectClass#cascadeOnActivate(bool)

ObjectClass#objectField(...).cascadeOnActivate(bool)

October 2, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Transparent Activation

 Make activation transparent to application logic
 activate fields automatically when they are accessed

 ease maintenance of multi-level activation strategies

 Logic of the transparent activation framework
 transparently activated objects implement Activatable interface

 when an object is instantiated, the database registers itself with the
object using the bind method

 instances are not activated automatically

 upon access the activate method is used to check whether the
field has been activated and, if not, load the value

 Enabling the transparent activation framework

October 2, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

config.add(new TransparentActivationSupport());

Transparent Persistence and Activation Example

public class Author implements Activatable {

// activator

transient Activator activator;

...

public Author(...) {

...

}

// read activation

public Date getBirthday() {

this.activate(ActivationPurpose.READ);

return this.birthday;

}

// write activation

public void setBirthday(Date birthday) {

this.activate(ActivationPurpose.WRITE);

this.birthday = birthday;

}

October 2, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

// field activation

public void activate(ActivationPurpose p) {

if (this.activator == null) {

return;

}

this.activator.activate(p);

}

// bind instance to the framework

public void bind(Activator a) {

if (this.activator == a) {

return;

}

if (a != null && this.activator != null) {

throw new IllegalStateException();

}

this.activator = a;

}

...

}

 Automatic code insertion through bytecode instrumentation

db4o Transactions

 ACID transaction model

 Data transaction journaling
 zero data loss in case of system failure

 automatic data recovery after system failure

 db4o core is thread-safe for “simultaneous” interactions
 core operates in single-thread mode

 All work within db4o ObjectContainer is transactional

 transaction started implicitly when container opened

 current transaction committed implicitly when container closed

 explicit commit using method commit of ObjectContainer

 explicit abort using method rollback of ObjectContainer

October 2, 2009 29Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Database Commit

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving author "Moira C. Norrie"

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next();

// creating author "Stefania Leone"

Author stefania = new Author("Stefania Leone");

// creating new publication

Publication article = new Publication("Web 2.0 Survey");

article.addAuthor(stefania);

article.addAuthor(moira);

// storing publication

db.store(article);

// committing database

db.commit();

October 2, 2009 30Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Database Rollback

 Modifications are written to temporary memory storage

 Implicit or explicit commit writes the modifications to disk

 Database rollback resets last committed database state

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving publication

Publication article =

db.queryByExample(new Publication("Web 2.0 Survey")).next();

// updating publication

Author michael = new Author("Michael Grossniklaus");

article.addAuthor(michael);

db.store(article);

// aborting transaction

db.rollback();

October 2, 2009 31Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Database Rollback

 Again, inconsistencies of memory and disk possible
 method rollback cancels modifications on disk

 state of the objects in reference cache is not adapted

 live objects need to be refreshed explicitly

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving publication

Publication article =

db.queryByExample(new Publication("Web 2.0 Survey")).next();

// updating publication

Author michael = new Author("Michael Grossniklaus");

article.addAuthor(michael);

db.store(article);

// aborting transaction

db.rollback();

// refreshing article to remove author from in-memory representation

db.ext().refresh(article, Integer.MAX_VALUE);

October 2, 2009 32Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Concurrent Transactions

 Digression on isolation levels
 read uncommitted: values modified by other transactions can be

read before they are committed

 read committed: only values that have been modified and
committed by other transactions can be read

 repeatable read: all read operations within a transaction yield the
same result

 serialisable: database state resulting from concurrent execution of
transactions could have been obtained from a possible serial
execution of the same transactions

 db4o uses the read committed isolation level

 Inconsistencies and collisions can occur!

October 2, 2009 33Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Collision Detection

 Check if object has changed during transaction before

committing a transaction
 store value of object in local variable at transaction start

 use peekPersisted method of ExtObjectContainer to look at
the persistent version of the object

 compare initial value to stored value

 rollback current transaction if value has changed

 Method peekPersisted returns a transient object that

has no connection to the database
 instantiation depth of transient object can be configured

 method can be used to read either committed or stored values

October 2, 2009 34Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Collision Detection

ObjectContainer db =

Db4oClientServer.openClient("localhost", 3927, "...", "...");

// retrieving author "Moira Norrie"

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next();

// storing initial value of field

Date birthday = moira.getBirthday();

...

// retrieve stored value of field

Author persisted = db.ext().peekPersisted(moira, 9, true);

// compare the values and abort if necessary

if (persisted.getBirthday() != birthday) {

db.rollback();

} else {

db.commit();

}

October 2, 2009 35Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Collision Avoidance with Semaphores

 Avoid collisions by locking objects explicitly

 Semaphores can be used protect critical code sections
 a unique name must be provided

 time to wait if a semaphore is already owned by another transaction
has to be given

 Semaphores form basis to implement custom locking

ObjectContainer db =

Db4oClientServer.openClient("localhost", 3927, "...", "...");

if (db.ext().setSemaphore("SEMAPHORE#1", 1000)) {

// critical code section

...

// release semaphore after critical section

db.ext().releaseSemaphore("SEMAPHORE#1");

}

October 2, 2009 36Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Literature

 db4o Tutorial
 http://www.db4o.com/about/productinformation/resources/

 db4o Reference Documentation
 http://developer.db4o.com/Resources/view.aspx/Reference

 db4o API Reference
 http://developers.db4o.com/resources/api/db4o-java/

 Jim Paterson, Stefan Edlich, Henrik Hörning, and Reidar

Hörning: The Definitive Guide to db4o, APress 2006

October 2, 2009 37Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Next Week
db4o: Part 2

• Configuration and Tuning, Distribution and Replication

• Schema Evolution: Refactoring, Inheritance Evolution

• Callbacks and Translators

October 2, 2009 38Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

