ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Object-Oriented Databases
ODMG Standard

Object Model and Object Definition Language
Object Query Language (OQL)
Programming Language Bindings

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH I_f !

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Development of OODBMS

= Many systems closely related to programming languages
Versant, Ontos, ObjectStore, Objectivity (C++)
GemStone (Smalltalk)

= Early versions had no query language support
ObjectStore had limited selection-based queries

= O, developed at INRIA (France) with large funding from
European research projects
took more of a database approach
Intended to be language independent
lot of research on query languages
Interests also in interface and development tools support

October 30, 2009

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

Informatik
Computer Science

|
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal In

Standards for Object Data Management

= Object Management Group (OMG)
architectures and tools to develop object-oriented systems
distributed object management
best known for Unified Modeling Language (UML)

= QObject Data Management Group (ODMG)
data management support
complementary to OMG
ODMG data model based on OMG object model

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

Informatik
Computer Science

u
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Object Data Management Group (ODMG)

ODMG formed very early in development of OODBMS

Informal standards body involving all major vendors
initiated in 1991 by Rick Cattell of SunSoft
initially ODMG comprised five people from OODBMS vendors

= Promote portability and interoperability across products

= Not developing a standard OODBMS product

products will vary in terms of languages, tools, interfaces,
performance, etc.

products may be tailored to application domains, e.g. version
management for Computer-Aided Software Engineering (CASE)

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH I_f !

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

ODMG Standard

= Object Model
= QObject Definition Language (ODL)
= Object Query Language (OQL)

= |Language bindings
C++ Binding
Smalltalk Binding
Java Binding

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

Informatik

ETH -
Eidgendssische Technische Hochschule Zirich I n f

Swiss Federal Institute of Technology Zurich

ODMG Object Model

= Based on the OMG object model

= Basic modelling primitives
object unigue identifier
literal no identifier
= Object state defined by the values carried for a set of
properties, I.e. attributes or relationships

= Object behaviour defined by the set of operations that can
be executed

= Objects and literals are categorised by their type which
defines common properties and common behaviour

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

Computer Science

ETH I_f !

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Types

= Specification
properties, i.e. attributes and relationships
operations

exceptions

= |Implementation
language binding
a specification can have more than one implementation

October 30, 2009

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH I_f !

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Type Specifications

= |nterface
defines only abstract behaviour
interface Employee {...};
= Class
defines both abstract behaviour and abstract state
class Person {...};
= Literal

defines abstract state
struct Complex { float real; float imaginary; };

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Type Implementation

= Representation

data structure

derived from type's abstract state by the language binding
= Methods

procedure bodies

derived from type's abstract behaviour by the language binding
also private methods with no counterpart in specification

October 30, 2009

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

! !
ETH -

Informatik
Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Computer Science

Subtyping and Inheritance

= Two types of inheritance relationships

= |S-A relationship
inheritance of behaviour
multiple inheritance, name overloading disallowed
interface Professor : Employee {...};
= EXTENDS relationship

Inheritance of state and behaviour
single inheritance

class EmplPers extends Person : Employee {...};

October 30, 2009

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Extents

= Extent of a type is the set of all active instances
assume class Person

extent of class Person would be the current set of all person objects
In the data management system

= Extents can be maintained automatically

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Collections

= Supports both collection objects and collection literals

set unordered, no duplicates

bag unordered, duplicates

list ordered, elements can be inserted
array ordered, elements can be replaced
dictionary maps keys to values

= Collection objects
Set<t>, Bag<t>, List<t>, Array<t>, Dictionary<t,v>

= Collection literals
set<t>, bag<t>, list<t>, array<t>, dictionary<t,v>

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH I_f !

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Collections

= Subset containment relation defined only over sets

= QOperations union, intersection and difference defined only
over sets and bags

= No constraints over collections

October 30, 2009

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Collections

interface Collection : Object {
exception InvalidCollectionType({}:;
exception ElementNotFound{ Object element; };
boolean is_empty() ;

boolean contains_element(in Object element) ;
void insert_element(in Object element) ;
void remove element(in Object element) raise (ElementNotFound)

Iterator create_ iterator(in boolean stable) ;

boolean query(in string oql predicate, inout Collection result);

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Sets and Bags

class Set : Collection {
attribute set<t> wvalue;

Set create union(in Set other_ set);
Set create_intersection(in Set other_ set);
Set create _difference(in Set other_ set);

boolean is_subset of(in Set other_ set);
boolean is_proper subset of (in Set other_ set);

};

class Bag : Collection {

attribute bag<t> wvalue;

unsigned long occurrences_of (in Object element) ;
Bag create union(in Bag other bag);

Bag create intersection(in Bag other bag);

Bag create difference(in Bag other bag);

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n f

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Relationships

= All relationships are binary

many-to-many relationships have a collection for both the type of
the relationship and its inverse

many-to-one relationships have a collection for the type of the
relationship and class for its inverse

one-to-one relationships have a class both for the type of the
relationship type and for its inverse

= No support for ternary (or higher) relationships or
relationship attributes
can be simulated by creating classes to represent relationship tuples

= System maintains referential integrity

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Persistence

= Persistence by reachability

= Database gives access to global names
explicitly named root objects
types defined in schema
named extents of types

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Other Concepts Supported

= Database operations

= Locking and concurrency control
= Transactions

= Access to metadata

= Built-in structured literals and objects
dates
times
timestamps
Intervals

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

| |
ETH

|
Informatik
Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Computer Science

Object Definition Language (ODL)

= Object-oriented design and specification language
supports semantic constructs of ODMG object model

programming language independent, extensible and practical
compatible to OMG Interface Definition Language (IDL)

= ODL object class definition

class hame [(extent name, key name)] {
{ exception name { {type name}} }
{attribute type name }

{ relationship type name inverse relationship }
{type name ({(in|out|inout)typename}) [raises ({exception})]}

extent and key of a class can be specified optionally

relationships specify inverse to maintain referential integrity
methods signatures are implemented by language binding

October 30, 2009

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Example Class Hierarchy

October 30, 2009

Author

Inf

Publication

name: String
birthday: Date

0:__* authors o * | title: String

year: int

+getName(): String
+setName(name: String)
+getBirthday(): Date
+setBirthday(birthday: Date)
+getAge(): int

+getTitle(): String

+getYear(): int

+setTitle(title: String)

+setYear(year: int)

Informatik
Computer Science

Article

Book

beginPage: int

price: double

endPage: int

+getBeginPage(): int

+getPrice(): double
+setPrice(price: double)

+setBeginPage(page: int)
+getEndPage(): int
+setEndPage(page: int)

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

ODL Example

class Author (extent Authors) {
attribute string name;
attribute date birthday;
relationship set<Publication> authors inverse Publication::authored by’
integer get age();
}i

class Publication (extent Publications) {
attribute string title;
attribute integer year;
relationship list<Author> authored by inverse Author::authors;

};

class Article extends Publication (extent Articles) {
attribute unsigned short begin page;
attribute unsigned short end page;

}i

class Book extends Publication (extent Books) {
attribute double price;

1) 5

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Object Query Language (OQL)

= Based on ODMG Object Model and SQL-92

select list of values

from list of collections and typical members
where condition

collections can be extents or expressions that evaluate to collection
names can be used to denote a typical member of a collection

= Path expressions to navigate complex objects
person.spouse.address.street.name

= Not computationally complete
rather simple to use query language

= No explicit update operators
but can invoke update operations on objects

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Basic Select Statement

= Find the titles of all publications with more than one author
that were published after 1995

select p.title

from Publications p

where p.year > 1995

and count (p.authored by) > 1

= Find the titles of all publications authored by Tilmann

Zaschke

select a.authors.title select p.title

from Authors a from Authors a, a.authors p
where a.name = "Tilmann Zaeschke" where a.name = "Tilmann Zaeschke"
lllegal as the “dot” operator cannot be solution based on correlated

applied to a collection of objects variables

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Return Types

= Queries return sets, bags or lists
as a default, queries return a bag

select first: p.authored by[l], p.title, p.year
from Publications p

Bag<Struct { Author first, string title, integer year }>

queries with DISTINCT return a set

select distinct a.name

from Authors a

Set<Struct { string name }>

gueries with ORDER BY return a list

select p.title
from Publications s
order by p.year desc

List<Struct { string name }>

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH I_f !

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Subqueries

= Subqgueries are mainly expressed in FROM clauses
= Find the names of all co-authors of Michael Nebeling

select distinct a.name
from (select mp
from Authors m, m.authors mp

where m.name = "Michael Nebeling") p, p.authored by a

= Find the titles of the articles that were published in the
same year at the book on the ODMG 3.0 standard

select p.title
from Articles p, (select o.year
from Books o

where o.title = "ODMG 3.0") y
where p.year in y

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Universal and Existential Quantification

= Boolean expressions that can be used in WHERE clauses

= Find the names of authors who have written a book that
costs less than 20 €

select a.name
from Authors a
where exists b in Books:
b.price < 20 and b in a.authors

* Find the names of authors who have not published
anything since 2000

select a.name

from Authors a

where for all p in a.authors:
p.year <= 2000

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Collection Expressions

= Aggregate operators

AVG, SUM, MIN, MAX, and COUNT apply to collections that have a
compatible member type

= QOperations for sets and bags
UNION, INTERSECTION and EXCEPT
Inclusion tests (subset, superset)

= Special operations for lists

= Simple coercions

a collection of one element can be coerced to that element using the
ELEMENT operator

= Flattening a collection of collections

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

= ODMG was dissolved in 2001
= OMG obtained rights to ODMG 3.0 in 2003

= OMG Object Database Technology Working Group
(ODBTWG) was founded in 2005 in response to renewed
Interest in object-oriented databases

= First white paper proposes object calculus based on
abstract store model and stack-based queries

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Literature

= R. G. Cattell, Douglas K. Barry, Mark Berler, Jeff Eastman,
David Jordan, Craig Russell, Olaf Schadow, Torsten
Stanienda, Fernando Velez (Editors): The Object Data
Standard: ODMG 3.0, Morgan Kaufmann 2000

= OMG Object Database Technology Working Group: Next-
Generation Object Database Standarization, White
Paper, September 2007

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Next Week
Commercial OODBMS: Versant

* Versant Object Database for Java
« Java Versant Interface (JVI)
* Versant Query Language (VQL)

October 30, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

