
Object-Oriented Databases
db4o: Part 2 

• Configuration and Tuning, Distribution and Replication

• Schema Evolution: Refactoring, Inheritance Evolution 

• Callbacks and Translators

October 9, 2009 1Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Summary: db4o Part 1

 Managing databases with an object container

 Retrieving objects
 query by example

 native queries

 SODA queries

 Updating and deleting simple and complex objects
 configuration of update, delete and activation depth

 inconsistencies between in-memory and stored objects

 transparent activation and persistence

 Transactions
 commit and rollback

 concurrent transactions, collision detection and avoidance

October 9, 2009 2Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Configuration and Tuning

 Configuration interface

 configuration obtained through
 Db4oEmbedded#newConfiguration()

 Db4oClientServer#newClientConfiguration()

 Db4oClientServer#newServerConfiguration()

 configuration set when object container, client or server opened

 further changes to configuration do not affect already opened object 
containers, clients and servers

 External tools
 performance tuning

 database diagnostics

 Indexes
 optimise query evaluation

October 9, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Configuration Interface

 Represented by CommonConfiguration,

Configuration and their subclasses

 Methods rather than properties files

 Configuration setting groups
 object-related methods

 file-related methods

 reflection-related methods

 communication-related methods

 logging-related methods

 miscellaneous configuration methods

 Configuring an existing object container or object server
 access settings with ExtObjectContainer#configure() or 
ExtObjectServer#configure(), respectively

October 9, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



External Tools

 Defragment
 removes unused fields and management information

 compacts database file and provides faster access

 initiated from command line or from within application

 Statistics
 computes and outputs statistics about a database file

 executed from command line or programmatically

 Logger
 logs all objects in a database file

 logs all objects of a given class

 run from command line

October 9, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Indexes

 Trade-off between increased query performance and 

decreased storage, update and delete performance

 Support for B-Tree indexes on single object fields
 enabled or disabled using configuration interface

 internal field i_indexed is set to true or false for indexed field

 index created or removed automatically when object container or 
object server is opened

 Example

// create an index

CommonConfiguration#objectClass(...).objectField(...).indexed(true);

// remove an index

CommonConfiguration#objectClass(...).objectField(...).indexed(false);

October 9, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Tuning for Speed

 Heuristics to improve performance of db4o
 weak references, BTree node size, freespace manager, locking, 

flushing, callbacks, caches, …

 Object loading
 use appropriate activation depth

 use multiple object containers

 disable weak references if not required (no updates performed)

 Database tests
 disable detection of schema changes

 disable instantiation tests of persistent classes at start-up

 Query evaluation
 set field indexes on most used objects to improve searches

 optimise native queries

October 9, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Distribution and Replication

 Embedded mode
 database accessed by clients in the same virtual machine

 direct file access: one user and one thread at a time

 client session: one user and multiple threads

 Client/Server mode
 clients in multiple virtual machines access database on server

 server listens for and accepts connections

 clients connect to server to perform database tasks

 Replication
 multiple servers manage redundant copies of a database

 changes are replicated from master to client servers

 replicated databases need to be kept consistent

October 9, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Embedded Mode: Direct File Access

 Application and database in the same virtual machine

 Database file opened, locked and accessed directly
 Db4oEmbedded.openFile(config, name)

 database operations performed on embedded object container

 Single user and single thread

Database File
EmbeddedObjectContainer

Virtual Machine

October 9, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Embedded Mode: Client Session

 Application and database in same virtual machine

 Database file accessed through client session
 EmbeddedObjectContainer#openSession()

 database operation performed on session object container

 Single user and multiple threads

Database File
EmbeddedObjectContainer

Virtual Machine

October 9, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

ObjectContainer

ObjectContainer

ObjectContainer

Client Sessions



Client/Server Modes: Networking Mode

 Client opens TCP/IP connection to server
 Db4oClientServer.openServer(filename, port)

 Db4oClientServer.openClient(host, port, user, pass)

 Client sends query, insert, update and delete instructions 

to server and receives data from the server

Database File
ObjectServer

Virtual Machine

ObjectContainer

ObjectContainer

ObjectContainer

Database Operations

October 9, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Client/Server Modes: Out-of-Band Signalling

 Basic client/server mode cannot transmit commands
 operations are limited to methods of ObjectContainer

 Out-of-band signalling
 MessageSender#send(object)

 MessageRecipient#processMessage(context, message)

Database File

ObjectServer

Server Machine

Database Operations 

and Commands

MessageRecipient

processMessage

ObjectContainer

Client Machine

MessageSender

sendMessage

October 9, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Replication

 Database managed by redundant servers
 data changes on masters or publishers

 changes replicated to clients of subscribers

 Several forms of replication supported
 snapshot replication

 transactional replication

 merge replication

 Replication in db4o has to be coded into application and 

cannot be configured on an administrative level
 replication only occurs on demand, i.e. not automatically

 client/master semantics introduced by developer

 db4o provides one interface to support all forms of replication

October 9, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Replication Modes: Snapshot Replication

 Snapshots of the master database replicated to client
 state-based

 periodical schedule

 Support in db4o
 special SODA query to detect all new and updated objects

Master

Client

Client

Client

Client

October 9, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Replication Modes: Transactional Replication

 Changes are synchronised after transaction
 operation based

 changes are replicated immediately

 Support in db4o
 single object replication with ReplicationSession

Master

Client

Client

Client

Client

October 9, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Replication Modes: Merge Replication

 Changes from client are merged to central server

 Other clients are updated to reflect changes

 Can be done either transactionally or on a periodic basis

 Typically occurs if subscribers are occasionally offline

Master

Client

Client

Client

Client

October 9, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



db4o Replication System

 Introduced in db4o version 5.1

 Replication solution separated from db4o core
 bridges divide between db4o and relational databases

 uni- or bidirectional replication

 replication of relational databases based on Hibernate

 Transfers data between replication providers

 Supported replication providers
 db4o to db4o

 db4o to Hibernate, Hibernate to db4o

 Hibernate to Hibernate

October 9, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



db4o Replication System

 Requires three steps
 generating unique IDs and version numbers

 creating a ReplicationSession object

 replicating objects

 Replication mode is dependent on implementation

 Replication is bidirectional by default
 replication can be configured to be unidirectional using method 
ReplicationSession#setDirection(from, to)

 on ReplicationSession#replicate(object) newer version 
of object will be transferred to the database with older version

 Replication has object granularity
 also traverses new or changed members in object graph

October 9, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



db4o Replication System

// configuration

EmbeddedConfiguration config = Db4oEmbedded.newConfiguration();

config.file().generateUUIDs(ConfigScope.GLOBALLY);

config.file().generateVersionNumbers(ConfigScope.GLOBALLY);

ObjectContainer db1 = Db4oEmbedded.openFile(config, "test1.db");

ObjectContainer db2 = Db4oEmbedded.openFile(config, "test2.db");

// replication session

ReplicationSession replication = Replication.begin(db1, db2,

new ReplicationEventListener() {

public onReplicate(ReplicationEvent e) {

if (e.isConflict()) {

e.overrideWith(e.stateInProviderA());

}

}

}

);

replication.setDirection(db1, db2);

October 9, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



db4o Replication System

// update database and replicate (transactional replication) 

Author stanzetta = new Author("Christoph Zimmerli");

db1.store(stanzetta);

replication.replicate(stanzetta);

replication.commit();

// replicate changed publications (snapshot replication)

ReplicationProvider provider1 = replication.providerA();

ObjectSet<Publication> result = 

provider1.objectsChangedSinceLastReplication(Publication.class);

for (Publication publication: result) {

replication.replicate(publication);

}

replication.commit();

// close the replication session

replication.close();

October 9, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Schema Evolution

 Class definitions and inheritance structure can change
 additional application requirements

 software refactoring

 Class definitions and hierarchy are database schema

 In object-oriented databases schema evolution is simpler 

than in object-relational mappings as only one data model 

exists
C

OODBMS

C C C

RDBMS

C C

TTT

October 9, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Refactoring Scenarios

 Changes to interface implemented by class
 supported as db4o only stores data and not implementations

 Removing a field
 new objects stored in new format

 additional field ignored in objects stored in old format

 Adding a field
 new objects stored in new format

 additional field set to null in objects stored in old format

 Changing the type of a field
 simply stored as a new field

 manual migration if old and new type incompatible

October 9, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Refactoring Scenarios

 Renaming a field
 old field is deleted and a new inserted

 data migration through configuration interface

 Renaming a class
 managed through configuration interface

 Merging fields

 Splitting fields manual using a helper program

 Moving fields

CommonConfiguration#objectClass(...).objectField(...).rename(...);

CommonConfiguration#objectClass(...).rename(...);

October 9, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Inheritance Evolution

 Refactoring of inheritance structure
 deleting classes from inheritance hierarchy

 inserting classes into inheritance hierarchy

 swap classes in inheritance hierarchy

 Tools for inheritance evolution are being developed
 create a type-less transfer database 

 switch classpath manually

October 9, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Callbacks

 Set of methods called in response to events (triggers)

 db4o events
 activate and deactivate

 new, update and delete

 Methods called before and after event
 methods starting with can called before event

 methods starting with on called after event

 Methods defined by interface ObjectCallbacks

 interface does not have to be implemented explicitly by persistent 
class to use its functionality

 any number of methods can be implemented by persistent class

October 9, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Callbacks

package com.db4o.ext;

public interface ObjectCallbacks {

public boolean objectCanActivate(ObjectContainer c);

public boolean objectCanDeactivate(ObjectContainer c);

public boolean objectCanDelete(ObjectContainer c);

public boolean objectCanNew(ObjectContainer c);

public boolean objectCanUpdate(ObjectContainer c);

public void objectOnActivate(ObjectContainer c);

public void objectOnDeactivate(ObjectContainer c);

public void objectOnDelete(ObjectContainer c);

public void objectOnNew(ObjectContainer c);

public void objectOnUpdate(ObjectContainer c);

}

October 9, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Use Cases for Callbacks

 Recording or preventing updates
 methods canUpdate() and onUpdate()

 Setting default values after refactoring
 get values before update using method canNew()

 Checking object integrity before storing objects
 check field values using methods canNew() and canUpdate()

 Setting transient fields

 Restoring connected state when objects activated
 display graphical elements or restore network connections

 Creating special indexes
 detect if a field is queried often and create index automatically

October 9, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Controlling Object Instantiation

 No convention imposed for persistent classes by db4o

 Objects are instantiated using one of three techniques
 using a constructor

 bypassing the constructor

 using a translator

 For certain classes it is important which of these methods 

is used to retrieve objects
 if available, bypassing the constructor is default setting

 behaviour can be configured globally or per class

October 9, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Using Constructors

 db4o can use a constructor to instantiate objects
 if no default public constructor is present, all available constructors 

are tested to create instances of a class

 null or default values passed to all constructor arguments

 first successfully tested constructor is used throughout session

 if instance of a class cannot be created, the object is not stored

 Settings adjusted through configuration interface

// global setting (default: depends on environment)

CommonConfiguration#callConstructors(true)

// per class setting (default: depends on environment)

CommonConfiguration#objectClass(...).callConstructors(true)

// exceptions for debugging (default: true)

CommonConfiguration#exceptionsOnNotStorable(true)

October 9, 2009 29Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Using Constructors

public class Person {

Date birthdate;

transient Calendar today;

public Person(Date birthdate) {

this.birthdate = birthdate;

// get today's date and store it in a transient field

this.today = Calendar.getInstance();

}

public int getAge() {

Calendar birth = Calendar.getInstance();

birth.setTime(this.birthdate);

// NullPointerException in the next line if constructor not called! 

int years = this.today.get(Calendar.YEAR) – birth.get(Calendar.YEAR);

int diff = birth.add(Calendar.YEAR, age);

return (today.before(birth)) ? age-- : age;

} 

}

October 9, 2009 30Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Bypassing Constructors

 Constructors that cannot handle null or default values must 

be bypassed

 db4o uses platform-specific mechanisms to bypass 

constructors

 Not all environments support this feature
 Sun Java Virtual Machine (only JRE 1.4 and above)

 Microsoft .NET Framework (except Compact Framework)

 Default setting if supported by current environment

 Breaks classes that rely on constructors being executed

October 9, 2009 31Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Bypassing Constructors

public class Person {

Calendar birthdate;

int age;

public Person(Calendar birthdate) {

this.birthdate = birthdate;

// calculate age

Calendar today = Calendar.getInstance();

// NullPointerException in next line if called with null value!

int years = today.get(Calendar.YEAR) –

this.birthdate.get(Calendar.YEAR);

int diff = birth.add(Calendar.YEAR, age);

this.age = (today.before(birth)) ? age-- : age;

}

...

}

October 9, 2009 32Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Translators

 Some classes cannot be cleanly reinstantiated by db4o 

using either method
 constructor needed to populate transient members

 constructor fails if called with null or default values

 Translators control loading and storing of such objects
 Interface ObjectTranslator

 Interface ObjectConstructor extends ObjectTranslator

public Object onStore(ObjectContainer c, Object appObject);

public void onActivate(

ObjectContainer c, Object appObject, Object storedObject);

public Class storedClass();

public Object onInstantiate(

ObjectContainer c, Object storedObject);

October 9, 2009 33Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Translators

public class Person {

String name;

Calendar birthdate;

transient int age;

public Person(String name, Calendar birthdate) {

this.name = name;

this.birthdate = birthdate;

Calendar today = Calendar.getInstance();

int years = today.get(Calendar.YEAR) –

this.birthdate.get(Calendar.YEAR);

int diff = birth.add(Calendar.YEAR, age);

this.age = (today.before(birth)) ? age-- : age;

}

public String getName() { ... }

public Calendar getBirthdate() { ... }

public int getAge() { ... }

...

}

October 9, 2009 34Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Translators

public class PersonTranslator implements ObjectConstructor {

// map Person object to storage representation

public Object onStore(ObjectContainer c, Object appObject) {

Person person = (Person) appObject;

return new Object[] { person.getName(), person.getBirthdate() };

}

// reconstruct Person object from storage representation

public Object onInstantiate(ObjectContainer c, Object storedObject) {

Object[] raw = (Object[]) storedObject;

return new Person((String) raw[0], (Calendar) raw[1]);

}

public void onActivate(ObjectContainer c, Object appObject,

Object storedObject) { }

// return metadata about storage representation

public Class storedClass() {

return Object[].class;

}

}

October 9, 2009 35Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

CommonConfiguration#objectClass(Person.class).translate(

new PersonTranslator())



Type Handlers

 Instead of Translators

October 9, 2009 36Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Literature

 db4o Tutorial
 http://www.db4o.com/about/productinformation/resources/

 db4o Reference Documentation
 http://developer.db4o.com/Resources/view.aspx/Reference

 db4o API Reference
 http://developer.db4o.com/resources/api/db4o-java/

 http://developer.db4o.com/resources/api/dRS-java/

 Jim Paterson, Stefan Edlich, Henrik Hörning, and Reidar

Hörning: The Definitive Guide to db4o, APress 2006

October 9, 2009 37Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Next Week
Version Models

• Temporal Databases

• Engineering Databases

• Software Configuration Systems

October 9, 2009 38Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch


