
Object-Oriented Databases 
Storage and Indexing

• Type Hierarchy Indexing

• Aggregation Path Indexing

• Collection Operations

October 23, 2009 1Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Motivation

 Management of large data sets on persistent storage
 physical storage management

 content-based access

 Requirements of object-oriented model surpasses those of 

relational model
 storage, clustering and management of complex objects on physical 

persistent media

 access through object references and query predicates

 type inheritance hierarchies

 relationships

 multi-valued properties and collections

 Additional storage and indexing technologies necessary

October 23, 2009 2Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Object-Oriented Storage

 Object-oriented storage layouts are often not very different 

from relational systems

 Difference stems from the algorithms used to manage 

physical storage
 data structures to represent complex objects

 grouping or clustering records of complex objects

 grouping or clustering of referenced objects

 management of free space

 management of buffers

October 23, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Storage Model

 Physical storage is partitioned 

into value and access structures

 Data managed in data sets

 records of identical type

 attribute set A = {A1,...,An}

 domains Di = {mini, maxi}

 Pages or clusters correspond to 

a disk block or a sequence of 

disk blocks of fixed size b

 Records are stored in pages

 list of n values t = (v1,...,vn)

 Addresses reference pages

 Functions to map records to 

pages and vice-versa

Value Structures

Access Structures

Data Set

Query and 

Update 

Algorithms

Search Data 

Structures

Page Page Page

Record

Record

Record

Record Record

Record

Data Set

October 23, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Terminology

 Query
 point and range queries: match over exact values or intervals

 one- and multi-dimensional: one or more matching conditions

 Index
 unique and non-unique: index over keys or non-key fields (primary 

or secondary index)

 sequential and non-sequential key: index over ordered or 
unordered values

 one- and multi-dimensional: index over one or more fields

 compound: one-dimensional index over more than one value by 
concatenating fields

 placing (clustering) and non-placing (non-clustering): search 
data structure that does (or does not) allocate record physically

October 23, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Index Data Structure Overview

 Sequential organisation
 maintains list of storage pages that belong to data set

 new records placed in most recently allocated storage chunk

 during query all pages have to be retrieved

 Subspace mapping
 decomposition of data space into subspace

 overlapping and non-overlapping subspaces

 B-trees, K-d trees, grid files

 Point mapping
 direct mapping of data space elements to storage chunks

 function determines record signature used to find address

 hashing, extensible hashing

October 23, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Sequential Mapping

Index for Data Set

8172

Record

Record

Record

3927

Record

6345

Record

Record

Data Set

Page Directory

3927

6345

8172

..
.

October 23, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Subspace Mapping

Index for Data Set

Page

Record

Record

Record

Page

Record

Page

Record

Record

Data Set

Subspace Directory

boundary value |

b
o
u
n
d
a
ry

 v
a
lu

e
 |

October 23, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Point Mapping

Index for Data Set

Page

Record

Record

Data Set

Point Directory

0

1

2

3

n

..
.

Page

Record

Page

Record

Record

Page

Record

Page

Point Mappings

(Signatures)

6 0 0 1 0

3 4 0 9 6

4 0 3 5 0

7 5 7 0 9

2 0 2 1 0

every value 

combination yields 

a record signature

October 23, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Existing Index Data Structures

 One-dimensional index data structures
 B-tree, B+-tree

 extensible and linear hashing

 bounded disorder files

 signature files

 partial indices

 Multi-dimensional index data structures
 K-d tree, R-tree, H-tree, hB-tree, Quadtree, TV-tree, cell tree

 grid files

 Architecture and Implementation of Database Systems
 lecture covers many of these data structures

 http://www.systems.ethz.ch/education/courses/hs08/arch-dbms

October 23, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Type Hierarchy Indexing

 Object-oriented queries
 directly reference one type

 implicitly refer to a sub-hierarchy, i.e. a 

set of types

 Two design approaches for type 

hierarchy index data structures

 type grouping: first-level order criterion 

is object type

 key grouping: top-level data structure 

organises key values

 Index design has influence on 

resulting I/O performance of 

point and range queries

title: String

year: int

Publication

Book Fragment

Chapter Article

October 23, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Single Class Index (SC-Index)

 Originally introduced by the 

ORION system in 1989

 Index construction for an 

attribute of a type t

 construct a search structure for all 

types in sub-hierarchy of t

 search data structures called SC-

Index components

 evaluator needs to traverse all 

components referenced by query

 Usually implemented using B+-

trees, other data structures could 

be used

record

length

key 

length

key 

value

overflow

pointer
#OID OID list

sibling 

pointer

child

pointer

boundary

value

child

pointer

boundary

value

boundary

value

child

pointer

October 23, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



H-Tree

 A H-tree consists of a set of 

nested B+-trees

 Nesting reflects structure of 

indexed type hierarchy

 each H-tree component of indexed 

type is nested with 

H-trees of immediate subtypes of 

indexed type

 H-tree index for an attribute of 

inheritance sub-graph is H-tree 

hierarchy nested according to 

supertype-subtype relation

 Aims to avoid full scans of each 

B-tree component when several 

types are queried

#entry
key 

length

key 

value

overflow

pointer
#OID

OID 

list

sibling 

pointer

child

pointer

boundary

value

child

pointer

parent

pointer

#entry
link 

entries

overflow

pointer

parent

pointer

#link 

entry

lower 

bound

upper 

bound

nested tree

pointer

lower 

bound

upper 

bound

nested tree

pointer

October 23, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Class Hierarchy Index (CH-Index)

 Maintains only one search 
structure for all objects of all 
types of indexed hierarchy

 Evaluator scans through B+-tree 
once (single-scan)

 selects OIDs of types referenced by 

query

 discards other OIDs

 Point queries always perform 
good, range queries depend on 
number of referenced types

 good when queries aim at indexed 

type and all subtypes

 bad if only few types of indexed 

hierarchy hit by the query

record

length

key 

length

key 

value

overflow

pointer
#OID

OIDs

type 1

sibling 

pointer

child

pointer

boundary

value

child

pointer

boundary

value

boundary

value

child

pointer

type 

directory
#OID

OIDs

type n

#type
type

id 1
offset

type

id 2
offset

type

id n
offset

October 23, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Class Division Index (CD-Index)

 Find a compromise between

 indexing and storing instance set for 

each type

 indexing and storing extent for each 

type

 Maintains a specific family of 
type sets for indexed hierarchy

 Each type set is managed using 
a search data structure

 Parameters q and r give upper 
bounds for decompositions

 q: number of search structures 

required to build a type extent

 r: number of times a type set is 

managed redundantly or replicated

 CD-index with space pruning

 Result of rake-contract heuristic

Publication Book Fragment Chapter Article

Publication Book Fragment Chapter Article

Publication Book

Publication Book Fragment Chapter Article

Publication Book

Publication Book Fragment Chapter Article

Fragment Chapter Article

Publication Book Fragment Chapter Article

q = 3
r = 2

q = 1
r = 3

October 23, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Multi-Key Type Index (MT-Index)

 Compromise between type and 
key grouping approaches

 Interprets type membership as 
an additional object attribute

 symmetrical indexing of object types 

and attribute values

 able to support indexing of more than 

one attribute with single search data 

structure

 Can be built using any multi-
dimensional data structure

 BV-tree, hB-tree or hBΠ-tree

 Performance of MT-index 
depends on linearisation of 
indexed type hierarchy

 Query evaluation

 traversal to collect set of relevant disk 

page addresses

 check all records and discard those 

not qualifying for request

Publication

Book

Fragment

Chapter

Article

Publication

Book

Fragment

Chapter

Article

1
9

9
4

2
0

0
7

1
9

9
4

2
0

0
7

October 23, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Aggregation Path Indexing

 Backward queries without full object scans
 find all persons working for an organisation located in Zurich

 Forward without retrieving intermediate objects
 find the city where person o12 works

 Path decomposition schemes

Person Organisation Location String
works-for situated-at city

o11

o12

o13

o14

o21

o22

o23

o31

o32

o33

Zurich

Basel

o24 o34

October 23, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Multi-Index (MX)

 Introduced by GemStone in 1989

 Divide path of arbitrary length into sub-paths
 sub-paths all have length one

 index maintained over sub-paths

 Multi-Index for path P, MX(P), consists of a set of index 

components IX(Pi)
 MX(Person.works-for.situated-at.city) = {IX(Person.works-for), 

IX(Organisation.situated-at), IX(Location.city)}

 Query evaluation
 concatenating n index edges requires n index scans

 supports backwards but not forward traversals and queries

October 23, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Multi-Index Example

Multi-Index MX(Person.works-for.situated-at.city)

Indexing graph for the Multi-Index

IX(Person.works-for)

o21 o11 o12

o22 o13

o23 o13 o14

IX(Location.city)

Basel o33

Zurich o31 o32

Person Organisation Location String
works-for situated-at city

IX(Organisation.situated-at)

o31 o21 o22

o32 o23

o34 o23 o24

October 23, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Access Support Relations (ASR)

 ASR for aggregation path of length n is (n+1)-ary relation

 Defined using binary ASRs for sub-paths of length one
 compositions: ASRcan, ASRfull, ASRleft and ASRright

 decompositions: Nested Index, Path-Index and Join-Index

ASR(Person.works-for)

o11 o21

o12 o21

o13 o22

o13 o23

o14 o23

ASR(Organisation.situated-at)

o21 o31

o22 o31

o23 o32

o23 o34

o24 o34

ASR(Location.city)

o31 Zurich

o32 Zurich

o33 Basel

October 23, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



ASR Compositions

ASRcan(Person.works-for.situated-at.city)

o11 o21

o12 o21

o13 o22

o13 o23

o14 o23

o31

o31

o31

o32

o32

Zurich

Zurich

Zurich

Zurich

Zurich

ASRfull(Person.works-for.situated-at.city)

o11 o21

o12 o21

o13 o22

o13 o23

o14 o23

o31

o31

o31

o32

o32

Zurich

Zurich

Zurich

Zurich

Zurich

– – o33 Basel

– o24 o34 –

o14 o23 o34 –

ASR(Person.works-for) ⨝ ASR(Organisation.situated-at) ⨝ ASR(Location.city)

ASR(Person.works-for) ⟗ ASR(Organisation.situated-at) ⟗ ASR(Location.city)

October 23, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



ASR Compositions

ASRright(Person.works-for.situated-at.city)

o11 o21

o12 o21

o13 o22

o13 o23

o14 o23

o31

o31

o31

o32

o32

Zurich

Zurich

Zurich

Zurich

Zurich

– – o33 Basel

(ASR(Person.works-for) ⟕ ASR(Organisation.situated-at)) ⟕ ASR(Location.city)

ASR(Person.works-for) ⟖ (ASR(Organisation.situated-at) ⟖ ASR(Location.city))

ASRleft(Person.works-for.situated-at.city)

o11 o21

o12 o21

o13 o22

o13 o23

o14 o23

o31

o31

o31

o32

o32

Zurich

Zurich

Zurich

Zurich

Zurich

o14 o23 o34 –

October 23, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



ASR Compositions Indexing Graph

 Queries that do not traverse the path at either endpoint 

cannot be answered efficiently

 Aggregation path can be split into sub-paths
 for each an ASR extension (partition) is maintained

 the set of partitions is called a decomposition of an ASR

Person Organisation Location String
works-for situated-at city

can, full, left, right

can, full, left, right

full, leftfull, left

full, right full, right

October 23, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Nested Index (NX)

 Only allows backwards traversals of the full path

 Equivalent to backward traversal in ASRcan

 A Nested Index NX(P) for a path P with length one is 

equivalent to a Multi-Index MX(P) for the same path

Person Organisation Location String
works-for situated-at city

October 23, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Path-Index (PX)

 Equivalent to backwards traversal of right-complete ASR

 A Path-Index PX(P) for a path P with length one is 

equivalent to a Multi-Index MX(P) and a Nested Index 

NX(P) for the same path

Person Organisation Location String
works-for situated-at city

October 23, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Join-Index (JX)

 Originally introduced to optimise joins in relational DBMS

 Join-Index consists of a set of binary join indices
 one binary join index per sub-path of length one of indexed path

 each binary join index kept redundantly in two data structures 

 binary join index equivalent to corresponding binary ASR

Person Organisation Location String
works-for situated-at city

October 23, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Collection Operations

 Object-oriented databases allow multi-valued attributes
 sets, bags, lists and arrays of values

 new modelling features and enhanced expressiveness

 increased complexity of indexing and query optimisation

 OQL provides constructors and operators for collections

select p.name from Publication p

where "XCM" in p.topics

select p.name from Publication p

where Set("Indexing", "Storage", "OQL") <= p.topics

select p.name from Publication p

where Set("Indexing", "Storage", "OQL") >= p.topics

October 23, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Signature Files

 Originally proposed for information retrieval

 Index construction for a multi-valued property of a type
 compute element signature for every possible attribute value

 compute set signature based on element signatures

 signature file stores set signatures for all objects 

 Query evaluation over multi-valued properties
 compare query set SQ to each target ST by matching the query 

signature sig(SQ) and the target signature sig(ST)

 matching of signatures yields drops
ST is a drop for SQ ⊆ ST iff (sig(SQ) ⋀ sig(ST)) = sig(SQ)
ST is a drop for SQ ⊇ ST iff (sig(SQ) ⋀ sig(ST)) = sig(ST)

 drops can be actual drops or false drops

October 23, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Signature Files Example

Element

Indexing 00100001

Storage 01000001

OQL 00100010

Signature

Query 01100011

Element

Storage 01000001

OQL 00100010

Recovery 10000100

Signature

Target 11100111

Element

Indexing 00100001

Storage 01000001

Modelling 10010000

Signature

Target 11110011

SQL 01100000OQL 00100010

Element

Storage 01000001

Signature

Target 01100001

Element

Storage 01000001

OQL 00100010

Signature

Target 01100011

SQL 01100000

Query Set SQ

SQ ⊆ ST

Target Sets ST

SQ ⊇ ST

actual drop

actual drop

false drop

false drop

October 23, 2009 29Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Literature

 Thomas A. Mueck and Martin L. Polaschek: Index Data 

Structures in Object-Oriented Databases, Kluwer

Academic Publishers 1997

 Elisa Bertino, Beng Chin Ooi, Ron Sacks-Davis, Kian-Lee 

Tan, Justin Zobel, Boris Shindlovsky and Barbara Catania: 

Indexing Techniques for Advanced Database Systems, 

Kluwer Academic Publishers 1997

 Sridhar Ramaswamy and Paris C. Kanellakis: OODB 

Indexing by Class Division, In: Proc. Intl. ACM Conf. on 

Management of Data (SIGMOD 1995), San José, CA, 

USA, pp. 139–150, 1995

October 23, 2009 30Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Next Week
ODMG Standard

• Object Model and Object Definition Language

• Object Query Language

• Programming Language Bindings

October 23, 2009 31Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch


