
Object-Oriented Databases
db4o: Part 2 

• Configuration and Tuning, Distribution and Replication

• Schema Evolution: Refactoring, Inheritance Evolution 

• Callbacks and Translators
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Summary: db4o Part 1

 Managing databases with an object container

 Retrieving objects
 query by example

 native queries

 SODA queries

 Updating and deleting simple and complex objects
 configuration of update, delete and activation depth

 inconsistencies between in-memory and stored objects

 transparent activation and persistence

 Transactions
 commit and rollback

 concurrent transactions, collision detection and avoidance
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Configuration and Tuning

 Configuration interface

 configuration obtained through
 Db4oEmbedded#newConfiguration()

 Db4oClientServer#newClientConfiguration()

 Db4oClientServer#newServerConfiguration()

 configuration set when object container, client or server opened

 further changes to configuration do not affect already opened object 
containers, clients and servers

 External tools
 performance tuning

 database diagnostics

 Indexes
 optimise query evaluation
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Configuration Interface

 Represented by CommonConfiguration,

Configuration and their subclasses

 Methods rather than properties files

 Configuration setting groups
 object-related methods

 file-related methods

 reflection-related methods

 communication-related methods

 logging-related methods

 miscellaneous configuration methods

 Configuring an existing object container or object server
 access settings with ExtObjectContainer#configure() or 
ExtObjectServer#configure(), respectively
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External Tools

 Defragment
 removes unused fields and management information

 compacts database file and provides faster access

 initiated from command line or from within application

 Statistics
 computes and outputs statistics about a database file

 executed from command line or programmatically

 Logger
 logs all objects in a database file

 logs all objects of a given class

 run from command line
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Indexes

 Trade-off between increased query performance and 

decreased storage, update and delete performance

 Support for B-Tree indexes on single object fields
 enabled or disabled using configuration interface

 internal field i_indexed is set to true or false for indexed field

 index created or removed automatically when object container or 
object server is opened

 Example

// create an index

CommonConfiguration#objectClass(...).objectField(...).indexed(true);

// remove an index

CommonConfiguration#objectClass(...).objectField(...).indexed(false);
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Tuning for Speed

 Heuristics to improve performance of db4o
 weak references, BTree node size, freespace manager, locking, 

flushing, callbacks, caches, …

 Object loading
 use appropriate activation depth

 use multiple object containers

 disable weak references if not required (no updates performed)

 Database tests
 disable detection of schema changes

 disable instantiation tests of persistent classes at start-up

 Query evaluation
 set field indexes on most used objects to improve searches

 optimise native queries
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Distribution and Replication

 Embedded mode
 database accessed by clients in the same virtual machine

 direct file access: one user and one thread at a time

 client session: one user and multiple threads

 Client/Server mode
 clients in multiple virtual machines access database on server

 server listens for and accepts connections

 clients connect to server to perform database tasks

 Replication
 multiple servers manage redundant copies of a database

 changes are replicated from master to client servers

 replicated databases need to be kept consistent
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Embedded Mode: Direct File Access

 Application and database in the same virtual machine

 Database file opened, locked and accessed directly
 Db4oEmbedded.openFile(config, name)

 database operations performed on embedded object container

 Single user and single thread

Database File
EmbeddedObjectContainer

Virtual Machine
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Embedded Mode: Client Session

 Application and database in same virtual machine

 Database file accessed through client session
 EmbeddedObjectContainer#openSession()

 database operation performed on session object container

 Single user and multiple threads

Database File
EmbeddedObjectContainer

Virtual Machine
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ObjectContainer

ObjectContainer

ObjectContainer

Client Sessions



Client/Server Modes: Networking Mode

 Client opens TCP/IP connection to server
 Db4oClientServer.openServer(filename, port)

 Db4oClientServer.openClient(host, port, user, pass)

 Client sends query, insert, update and delete instructions 

to server and receives data from the server

Database File
ObjectServer

Virtual Machine

ObjectContainer

ObjectContainer

ObjectContainer

Database Operations
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Client/Server Modes: Out-of-Band Signalling

 Basic client/server mode cannot transmit commands
 operations are limited to methods of ObjectContainer

 Out-of-band signalling
 MessageSender#send(object)

 MessageRecipient#processMessage(context, message)

Database File

ObjectServer

Server Machine

Database Operations 

and Commands

MessageRecipient

processMessage

ObjectContainer

Client Machine

MessageSender

sendMessage
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Replication

 Database managed by redundant servers
 data changes on masters or publishers

 changes replicated to clients of subscribers

 Several forms of replication supported
 snapshot replication

 transactional replication

 merge replication

 Replication in db4o has to be coded into application and 

cannot be configured on an administrative level
 replication only occurs on demand, i.e. not automatically

 client/master semantics introduced by developer

 db4o provides one interface to support all forms of replication
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Replication Modes: Snapshot Replication

 Snapshots of the master database replicated to client
 state-based

 periodical schedule

 Support in db4o
 special SODA query to detect all new and updated objects

Master

Client

Client

Client

Client
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Replication Modes: Transactional Replication

 Changes are synchronised after transaction
 operation based

 changes are replicated immediately

 Support in db4o
 single object replication with ReplicationSession

Master

Client

Client

Client

Client
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Replication Modes: Merge Replication

 Changes from client are merged to central server

 Other clients are updated to reflect changes

 Can be done either transactionally or on a periodic basis

 Typically occurs if subscribers are occasionally offline

Master

Client

Client

Client

Client
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db4o Replication System

 Introduced in db4o version 5.1

 Replication solution separated from db4o core
 bridges divide between db4o and relational databases

 uni- or bidirectional replication

 replication of relational databases based on Hibernate

 Transfers data between replication providers

 Supported replication providers
 db4o to db4o

 db4o to Hibernate, Hibernate to db4o

 Hibernate to Hibernate
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db4o Replication System

 Requires three steps
 generating unique IDs and version numbers

 creating a ReplicationSession object

 replicating objects

 Replication mode is dependent on implementation

 Replication is bidirectional by default
 replication can be configured to be unidirectional using method 
ReplicationSession#setDirection(from, to)

 on ReplicationSession#replicate(object) newer version 
of object will be transferred to the database with older version

 Replication has object granularity
 also traverses new or changed members in object graph
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db4o Replication System

// configuration

EmbeddedConfiguration config = Db4oEmbedded.newConfiguration();

config.file().generateUUIDs(ConfigScope.GLOBALLY);

config.file().generateVersionNumbers(ConfigScope.GLOBALLY);

ObjectContainer db1 = Db4oEmbedded.openFile(config, "test1.db");

ObjectContainer db2 = Db4oEmbedded.openFile(config, "test2.db");

// replication session

ReplicationSession replication = Replication.begin(db1, db2,

new ReplicationEventListener() {

public onReplicate(ReplicationEvent e) {

if (e.isConflict()) {

e.overrideWith(e.stateInProviderA());

}

}

}

);

replication.setDirection(db1, db2);
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db4o Replication System

// update database and replicate (transactional replication) 

Author stanzetta = new Author("Christoph Zimmerli");

db1.store(stanzetta);

replication.replicate(stanzetta);

replication.commit();

// replicate changed publications (snapshot replication)

ReplicationProvider provider1 = replication.providerA();

ObjectSet<Publication> result = 

provider1.objectsChangedSinceLastReplication(Publication.class);

for (Publication publication: result) {

replication.replicate(publication);

}

replication.commit();

// close the replication session

replication.close();
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Schema Evolution

 Class definitions and inheritance structure can change
 additional application requirements

 software refactoring

 Class definitions and hierarchy are database schema

 In object-oriented databases schema evolution is simpler 

than in object-relational mappings as only one data model 

exists
C

OODBMS

C C C

RDBMS

C C

TTT
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Refactoring Scenarios

 Changes to interface implemented by class
 supported as db4o only stores data and not implementations

 Removing a field
 new objects stored in new format

 additional field ignored in objects stored in old format

 Adding a field
 new objects stored in new format

 additional field set to null in objects stored in old format

 Changing the type of a field
 simply stored as a new field

 manual migration if old and new type incompatible
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Refactoring Scenarios

 Renaming a field
 old field is deleted and a new inserted

 data migration through configuration interface

 Renaming a class
 managed through configuration interface

 Merging fields

 Splitting fields manual using a helper program

 Moving fields

CommonConfiguration#objectClass(...).objectField(...).rename(...);

CommonConfiguration#objectClass(...).rename(...);
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Inheritance Evolution

 Refactoring of inheritance structure
 deleting classes from inheritance hierarchy

 inserting classes into inheritance hierarchy

 swap classes in inheritance hierarchy

 Tools for inheritance evolution are being developed
 create a type-less transfer database 

 switch classpath manually
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Callbacks

 Set of methods called in response to events (triggers)

 db4o events
 activate and deactivate

 new, update and delete

 Methods called before and after event
 methods starting with can called before event

 methods starting with on called after event

 Methods defined by interface ObjectCallbacks

 interface does not have to be implemented explicitly by persistent 
class to use its functionality

 any number of methods can be implemented by persistent class
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Callbacks

package com.db4o.ext;

public interface ObjectCallbacks {

public boolean objectCanActivate(ObjectContainer c);

public boolean objectCanDeactivate(ObjectContainer c);

public boolean objectCanDelete(ObjectContainer c);

public boolean objectCanNew(ObjectContainer c);

public boolean objectCanUpdate(ObjectContainer c);

public void objectOnActivate(ObjectContainer c);

public void objectOnDeactivate(ObjectContainer c);

public void objectOnDelete(ObjectContainer c);

public void objectOnNew(ObjectContainer c);

public void objectOnUpdate(ObjectContainer c);

}
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Use Cases for Callbacks

 Recording or preventing updates
 methods canUpdate() and onUpdate()

 Setting default values after refactoring
 get values before update using method canNew()

 Checking object integrity before storing objects
 check field values using methods canNew() and canUpdate()

 Setting transient fields

 Restoring connected state when objects activated
 display graphical elements or restore network connections

 Creating special indexes
 detect if a field is queried often and create index automatically
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Controlling Object Instantiation

 No convention imposed for persistent classes by db4o

 Objects are instantiated using one of three techniques
 using a constructor

 bypassing the constructor

 using a translator

 For certain classes it is important which of these methods 

is used to retrieve objects
 if available, bypassing the constructor is default setting

 behaviour can be configured globally or per class
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Using Constructors

 db4o can use a constructor to instantiate objects
 if no default public constructor is present, all available constructors 

are tested to create instances of a class

 null or default values passed to all constructor arguments

 first successfully tested constructor is used throughout session

 if instance of a class cannot be created, the object is not stored

 Settings adjusted through configuration interface

// global setting (default: depends on environment)

CommonConfiguration#callConstructors(true)

// per class setting (default: depends on environment)

CommonConfiguration#objectClass(...).callConstructors(true)

// exceptions for debugging (default: true)

CommonConfiguration#exceptionsOnNotStorable(true)
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Using Constructors

public class Person {

Date birthdate;

transient Calendar today;

public Person(Date birthdate) {

this.birthdate = birthdate;

// get today's date and store it in a transient field

this.today = Calendar.getInstance();

}

public int getAge() {

Calendar birth = Calendar.getInstance();

birth.setTime(this.birthdate);

// NullPointerException in the next line if constructor not called! 

int years = this.today.get(Calendar.YEAR) – birth.get(Calendar.YEAR);

int diff = birth.add(Calendar.YEAR, age);

return (today.before(birth)) ? age-- : age;

} 

}
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Bypassing Constructors

 Constructors that cannot handle null or default values must 

be bypassed

 db4o uses platform-specific mechanisms to bypass 

constructors

 Not all environments support this feature
 Sun Java Virtual Machine (only JRE 1.4 and above)

 Microsoft .NET Framework (except Compact Framework)

 Default setting if supported by current environment

 Breaks classes that rely on constructors being executed
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Bypassing Constructors

public class Person {

Calendar birthdate;

int age;

public Person(Calendar birthdate) {

this.birthdate = birthdate;

// calculate age

Calendar today = Calendar.getInstance();

// NullPointerException in next line if called with null value!

int years = today.get(Calendar.YEAR) –

this.birthdate.get(Calendar.YEAR);

int diff = birth.add(Calendar.YEAR, age);

this.age = (today.before(birth)) ? age-- : age;

}

...

}
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Translators

 Some classes cannot be cleanly reinstantiated by db4o 

using either method
 constructor needed to populate transient members

 constructor fails if called with null or default values

 Translators control loading and storing of such objects
 Interface ObjectTranslator

 Interface ObjectConstructor extends ObjectTranslator

public Object onStore(ObjectContainer c, Object appObject);

public void onActivate(

ObjectContainer c, Object appObject, Object storedObject);

public Class storedClass();

public Object onInstantiate(

ObjectContainer c, Object storedObject);
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Translators

public class Person {

String name;

Calendar birthdate;

transient int age;

public Person(String name, Calendar birthdate) {

this.name = name;

this.birthdate = birthdate;

Calendar today = Calendar.getInstance();

int years = today.get(Calendar.YEAR) –

this.birthdate.get(Calendar.YEAR);

int diff = birth.add(Calendar.YEAR, age);

this.age = (today.before(birth)) ? age-- : age;

}

public String getName() { ... }

public Calendar getBirthdate() { ... }

public int getAge() { ... }

...

}
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Translators

public class PersonTranslator implements ObjectConstructor {

// map Person object to storage representation

public Object onStore(ObjectContainer c, Object appObject) {

Person person = (Person) appObject;

return new Object[] { person.getName(), person.getBirthdate() };

}

// reconstruct Person object from storage representation

public Object onInstantiate(ObjectContainer c, Object storedObject) {

Object[] raw = (Object[]) storedObject;

return new Person((String) raw[0], (Calendar) raw[1]);

}

public void onActivate(ObjectContainer c, Object appObject,

Object storedObject) { }

// return metadata about storage representation

public Class storedClass() {

return Object[].class;

}

}
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CommonConfiguration#objectClass(Person.class).translate(

new PersonTranslator())



Type Handlers

 Instead of Translators
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Next Week
Version Models

• Temporal Databases

• Engineering Databases

• Software Configuration Systems

October 9, 2009 38Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch


