
Object-Oriented Databases
Commercial OODBMS: ObjectStore

• ObjectStore PSE Pro for C++

• Virtual Memory Architecture

• Managing Persistent Object Data

November 13, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 1



Progress ObjectStore

 Both Java and C++ environments supported

 ObjectStore Personal Storage Edition (PSE) Pro
 lightweight object database

 large, single-user databases

 small memory footprint (~500kB)

 multithreaded

 embedded systems, mobile computing and desktop applications

 ObjectStore Enterprise
 high-performance, distributed, multi-user database

 distributed, persistent, transactional object caching

 clustering, online backup, replication, high availability

 Migration of applications to from PSE to Enterprise is easy

November 13, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 2



ObjectStore Architecture

 Virtual memory mapping architecture extends operating 

system virtual memory architecture to provide persistence
 logical versus physical address

 physical memory and secondary storage

 page faulting

 address translation

 Characteristics of the ObjectStore architecture
 virtual

 shared

 distributed

 heterogeneous

 persistent

 transactional

November 13, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 3

assumed knowledge from 

operating system courses



Virtual Memory Mapping Architecture

 Logical versus physical address
 data is uniquely referenced within the database using a 4-part key

 yields a theoretical address space of 0...2128

 data is mapped from this 128 bit range into a reserved area of the 
database client application’s virtual memory (<< 2128 address space)

 reserved area is called persistent storage region (PSR)

 Physical memory and secondary storage
 all data accessed by client application must reside in PSR

 cache serves as secondary storage for operating system (instead of 
swap file) for persistent data mapped to logical address space

 cache holds recently accessed data even across transactions

November 13, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

database segment cluster offset in cluster



Virtual Memory Mapping Architecture

 Page faulting
 ObjectStore maps data into application when a fault interrupt occurs

 data is paged into memory from cache if not in PSR or fetched from 
the server if not in cache

 demand paging is primary means by which data gets from database 
into cache and then into application

 Address translation
 address translation is done when data is fetched into cache

 retranslation can occur when PSR gets nearly full

 updated pages are translated back to logical addressing schema 
before being written back to database

 trade-off: ability to use direct software pointers yields performance 
and modelling advantages, but translating pointers and pre-reserving 
address space has scalability implications

November 13, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Architecture Overview

November 13, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Daya

C
li
e
n

t 
S

id
e

S
e
rv

e
r 

S
id

e

ObjectStore
Server

Heap

Stack

PSR
Cache 

Manager

DatabaseDatabase

Commseg

Client

Cache

Transaction Log

C++ Client

Session



Server Side Components

 Server
 serves out pages and enforces ACID semantics using “page permits”

 co-operates with other servers in two-phase commits

 automatic recovery mechanism when restarted

 Database
 managed by one server (but server can manage multiple databases)

 binary files storing pages of memory containing C++ objects

 normally deployed in the file system on server-local discs

 Transaction Log
 each server owns transaction log to which updated pages are written

 pages only propagated to the database when transaction commits

 used for automatic recovery, faster commits and MVCC mechanism

November 13, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Client-Side Components

 Client
 C++ program linked with the ObjectStore libraries
 interacts with the database and manages objects
 pages automatically fetched from database as needed and cached

 Cache
 one cache memory mapped file per client process
 has a fixed size that cannot change once the client has started
 all pages fetched from the database by this client are held in cache
 pages can be retained in the cache between transactions

 Commseg
 one commseg memory mapped file per client process
 contains meta-information about every page in the cache
 stores permit and a lock for every page in the cache
 permits can be retained between transactions

November 13, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Client-Side Components

 Cache Manager
 one cache manager process per client machine is shared by all 

clients on that machine

 handles permit revokes 

 reads/writes to cache and commseg files

 not directly involved in page fetch in any way

 Persistent Storage Region
 is a reserved area of the virtual address space of the C++ program 

 address of persistent objects used by client mapped into PSR

 value of pointers to persistent objects will be in the range of the PSR

 at the end of every transaction the PSR is cleared and can be 
reused for the next transaction

November 13, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Fetching and Mapping Pages

 Client automatically fetches and maps pages
 pages are fetched “lazily” as needed

 pages are held in the client cache

 Pointer swizzling used to translate logical addresses on 
fetched page into physical addresses within PSR
 C++ pointers to already fetched objects 

 C++ pointers to ranges pre-reserved for yet-to-be fetched objects

 Server permits and client locks acquired automatically to 
ensure transaction consistency

 Existing page swapped out if not enough room in cache to 
hold new page
 updated pages are sent to the server

 read-only pages are dropped from cache as copy exists in database

November 13, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Fetching and Mapping Pages

 ObjectStore installs SIGSEGV 

(segment violation) handler

 Program obtains pointer p to 

object on page x

 Dereferencing p causes the 

SIGSEGV handler to be called

 Virtual mapping table is 

consulted and page fetched from 

server and stored in the cache

 Page x is mapped to the address 

space and execution continues

November 13, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Code

Stack

PSR

Address Space

Heap

ObjectStore Database

ObjectStore Cache

handler(void *ptr)

x

x

x

p

x



Cache-Forward Architecture

 Key to ability of ObjectStore to provide high performance
 data is cached across transaction boundaries

 number of times locks must be acquired is reduced

 cached data is kept in a globally consistent state

 ObjectStore maintains two types of locks on pages
 transaction locks represent the state of a page during transaction

 ownership permits represent the state of a page in the cache

 Permits are tracked by server and locks are taken by client
 server serves permits on pages that are sent to the client

 a client can then lock pages according to the given permit

November 13, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Shared Virtual Memory

 ObjectStore uses a lazy call-back mechanism for permits

 Server maintains a table of permits assignments to clients

 When a client requests a page from the server
 server checks for other clients with permit for page and permit types

 server issues call-back if one or more clients have conflicting permits

November 13, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 13

ObjectStore

Server

ObjectStore

Client

ObjectStore

Client

ObjectStore

Client

ObjectStore

Client



Page Permits and Locks

 Read permit

 client can lock page for reading 

without consulting the server

 many clients can hold a read permit 

for a page simultaneously

 Write permits

 client can lock page for reading or 

writing without asking the server

 only one client can hold a write permit 

for a page at any given time

 Cache manager inspects permit 
and lock status for call-back

  POSITIVE

  NEGATIVE (but permit is flagged 

to be revoked at transaction end)

Permit Lock Response

read read 

server only calls

back permit if other 

client needs to write

read no lock 

write read 

permit for page 

downgraded to read

write write 

write no lock 

November 13, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Distribution and Heterogeneity

 Clients can access objects in different remote databases in 

the same transaction

 Clients and servers can run on different platforms
 physical object layout transformed automatically by client runtime 

when page mapped into cache

 database records which platform wrote to each page last

November 13, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Solaris C++ 

Client

Windows 

C++ Client

Windows 

C++ Client

Linux C++ 

Client

Solaris C++ 

Server

HP-UX C++ 

Server



Persistence

 ObjectStore uses persistence by instantiation in C++

 Overloaded persistent new operator takes three arguments
 allocation of the new object

 type spec of the new object

 optionally, how many objects are to be allocated

 Several options for object allocation
 transiently on the heap

 database

 segment

 cluster

 next to another object

 Persistence is orthogonal to the type of an object and one 
codebase can be used for transient and persistent objects

November 13, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 16

Note: given the virtual memory architecture

it is helpful to co-locate objects which are 

used together to achieve high performance

designs and implementations



Transactions

 Support for basic ACID properties of transactional systems

 Atomicity
 after commit it is guaranteed that data was written and is recoverable

 after abort all changes are undone

 Consistency
 it is impossible to apply or lose updates while data is being written

 Isolation
 serialisability (CPSR) is guaranteed by two-phase locking (2PL)

 Multi-View Concurrency Control (MVCC) provides serialisability for 
read-only transactions using snapshots instead of locks

 Durability
 changes are written to the transaction log first

 background process propagates changes to the database

November 13, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 17



Transaction Types

 Read or Write
 Read transaction throws an exception if a page write lock is 

requested

 Local or Global
 Local only allows the initiating thread to execute

 Global allows all threads in a session to share the transaction

 Lexical or Dynamic
 Lexical transactions automatically retry on deadlock

 Lexical must start and end in same code block

 Lexical transactions are always thread-local

 Dynamic transactions are the lower level os_transaction class

 Dynamic transactions are better suited to multi-threaded applications

November 13, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Database Layout

 Memory pages held in hierarchy 

of clusters within segments

 Segments

 define logical partitioning of objects

 Segment 0: schema segment contains 

database schema and database roots

 Segment 2: default segment

 Segment 4: first user-created segment

 maximally 232 segments per database

 Clusters

 group closely related objects

 each segment has a default cluster 0, 

other clusters created by user

 maximally 231 clusters per segment

Segment 0

November 13, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Segment 2

Segment 4

Database Schema Database Roots



Developing Applications

 Programmer uses the ObjectStore libraries
 objectstore ObjectStore runtime 

 os_database database management functionality

 os_transaction transaction handles and functionality

 os_typespec functionality to determine type specification

 os_database_root creation, retrieval and removal of roots

 os_segment segment access and management

 os_cluster cluster access and management

 Development process
 writing of persistent classes, schema file and application logic

 compilation of schema file with pssg compiler

 compilation of classes with C++ compiler

 linking of object code

November 13, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Managing Databases

 Database management is provided by os_database
 create() creates a new database

 open() opens an existing database

 save() saves the database and makes changes permanent

 close() closes an open database, but does not save state

 destroy() deletes a database

November 13, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

#include <os_pse/ostore.hh>

int main(int argc, char **argv, char **envp)

{

objectstore::initalize();

os_database *db = os_database::create("publications.db", 0664, 1);

...

db->save();

db->close();

db->destroy();

objectstore::shutdown();

}



Transactions

 Transaction functionality is provided by os_transaction

 all interactions with the database must be in a transaction

 transactions can be nested arbitrarily

 Ways of defining and working with transactions
 directly using class os_transaction (dynamic)

 using macros provided with the ObjectStore libraries (lexical)

November 13, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

objectstore::initialize();

os_transaction::initialize();

os_database *db = os_database::open("publications.db", 0, 1);

OS_BEGIN_TXN(txn0, 0, os_transaction::update)

{

...

os_transaction *txn = os_transaction::get_current();

txn->abort();

}

OS_END_TXN(txn0)



Running Example

+getName(): String

+setName(name: String)

+getBirthday(): Date

+setBirthday(birthday: Date)

+getAge(): int

name: String

birthday: Date

Author

+getTitle(): String

+setTitle(title: String)

+getYear(): int

+setYear(year: int)

title: String

year: int

Publication

+getBeginPage(): int

+setBeginPage(page: int)

+getEndPage(): int

+setEndPage(page: int)

beginPage: int

endPage: int

Article

+getPrice(): double

+setPrice(price: double)

price: double

Book

0..* 0..*
authors

November 13, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Class Author

class Author

{

private:

const char *_name;

time_t _birthdate;

public:

// Constructor and destructor

Author(const char *name);

~Author();

// Getters and setters

const char* getName() const;

void setName(const char *name);

const struct tm* getBirthdate() const;

void setBirthdate(int day,

int month, int year);

// Derived methods

int getAge() const;

};

November 13, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

#include "Author.h"

Author::Author(const char *name)

{

this->setName(name);

_birthdate = 0;

}

Author::~Author(void)

{

if (_name) {

delete [] _name;

_name = 0;

}

}

const char* Author::getName()

{

return _name;

}

...



Creating Persistent Objects

 Objects in the database are created with the overloaded 
persistent new operator

 creating a single persistent object

 creating a persistent array of objects

November 13, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

os_database *db = os_database::open("publications.db", 0, 1);

Author *scheel = new(db, os_ts<Author>::get()) Author("Matthias Geel");

db->close();

void Author::setName(const char* name)

{

delete [] _name;

_name = 0;

if (name) {

int length = static_cast<int>(strlen(name)) + 1;

_name = new(os_cluster::of(this),         // allocate in the same cluster

os_typespec::get_char(),      // get char type spec

length) char[length];         // create an array of size length

strcpy_s(_name, length, name);

_name[length] = 0;

}

}



Updating and Deleting Persistent Objects

 Changes to persistent objects are propagated to database 
automatically when pages are sent back to server
 client application updates memory-mapped version of persistent 

objects using standard C++

 persistent objects are deleted by deleting the memory-mapped 
version of object using standard C++

 Fully transparent to the application developer

November 13, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

os_database *db = os_database::open("publications.db", 0, 1);

Author *moira = new(db, os_ts<Author>::get()) Author("Moira Norrie");

moira->setName("Moira C. Norrie");

db->save();     // page with updated version of object is sent to server

delete moira;

moira = 0;

db->save();     // page without the object is sent to server



Collections and Relationships

 Relationships between classes modelled as collections

 ObjectStore collection facility
 a library of non-templated and templated collection types

 traversal, manipulation, and retrieval functionality

 represented by class os_collection

November 13, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

// Forward declaration

class Publication;

class Author

{

private:

...

friend class Publication;

os_Set<Publication*>* _authors;

public:

...

void addPublication(Publication *p);

void removePublication(Publication *p);

};

// Forward declaration

class Author;

class Publication

{

private:

...

friend class Author;

os_List<Author*>* _authoredBy;

public:

...

void addAuthor(Author *a);

void removeAuthor(Author *a);

};



Collection Hierarchy

November 13, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

os_collection

os_Collection<E>

os_Set<E>

os_Bag<E>

os_List<E>

os_Array<E>

os_set

os_bag

os_list

os_array

os_dictionary

os_Dictionary<K, V>



Collections Example

 Creating a collection

 Accessing and manipulating a collection

 Deleting a collection

November 13, 2009 29Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Author::Author(const char *name)

{

...

_authors = new(os_cluster::of(this), 

os_Set<Publication*>::get_os_typespec()) os_Set<Publication*>();

}

void Author::addPublication(const Publication *p)

{

_authors->insert((Publication*) p);

os_List<Author*> *authoredBy = p->_authoredBy;

authoredBy->insert(this);

}

Author::~Author(void)

{

...

delete _authors;

_authors = 0;

}



Cursors over Collections

 Cursors are used to navigate and manipulate collections
 represented by class os_Cursor

 first() positions the cursor at the first element

 next() moves the cursor to the next element

 more() returns true if the cursor points to an element

 Cursor can be reused by rebinding it to another collection

November 13, 2009 30Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

const os_Set<Publication*>* Author::getPublications() const

{

os_Set<Publication*> *result = new(

os_database::get_transient_database(),

os_Set<Publication*>::get_os_typespec()) os_Set<Publication*>();

os_Cursor<Publication*> c(*_authors);

for (Publication *publication = c.first(); c.more(); publication = c.next()) {

result->insert(publication);

}

return result;

}



Queries over Collections

 Queries are evaluated over collections by specifying the 

element type, query string and schema database
 query string indicates the selection criterion, either specified in C++ 

or as a pattern matching expression

 support for function calls in query strings restricted to basic types

 support for nested queries

November 13, 2009 31Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

// Find all authors younger than 30 with more than 10 publications

char* query = "this->getAge() < 30 && this->getPublicationCount() > 10";

os_Set<Author*> &result = _authors->query("*Author", query, _db);

os_Cursor<Author*> c(result);

for (Author *author = c.first(); c.more(); author = c.next()) {

cout << author->getName() << endl;

}



Database Roots

 Database roots are persistent objects which have been 

labelled with a well-known name

 Represented by class os_database_root
 root name held as a char*

 pointer to the object of interest held as a void*

November 13, 2009 32Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Author* Database::retrieveAuthor(const char *name)

{

os_Dictionary<char*, Author*> *authors = 0;

os_database_root *root = _db->find_root("authors");

if (!root) {

root = _db->create_root("authors");

authors = new(_db, os_Dictionary<char*, Author*>::get_os_typespec())

os_Dictionary<char*, Author*>();

root->set_value(authors);

}

authors = (os_Dictionary<char*, Author*>*) root->get_value();

return authors->pick((char*) name);

}



Literature

 ObjectStore
 http://www.progress.com/objectstore/

November 13, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 33



Next Week
Commercial OODBMS: Objectivity/DB

• Objectivity/DB for .NET

• Logical Storage Model: Federated Databases

• Language Integrated Queries (LINQ)

November 13, 2009 34Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch


