
Object-Oriented Databases
The OM Data Model

• Multiple Inheritance, Instantiation and Classification

• Collections and Associations

• Cardinality, Classification and Evolution Constraints

November 27, 2009 1Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

OM Data Model

 Extended Entity-Relationship model for object-oriented

data management

 Distinguishing features
 distinguishes typing and classification

 data represented as objects, i.e. attributes and methods

 multiple inheritance, multiple instantiation, multiple classification

 collections and binary associations as first-order concept

 constraints for integrity, classification and evolution

 data definition, manipulation and query language OML

 Implementations
 OMS Pro, OMS/Java, eOMS, OMS Avon

November 27, 2009 2Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

OM Data Model

November 27, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

(0:*)(0:*)

(0:*)

(0:*)

(0:*) (1:*)

(0:*) (0:*)

organisation

Organisations

person

PersonsWorksFor LivesAt

SituatedAt

PartOf

contact

Contacts

location

Locations

ethperson

ETHPersons

private

Private

person

ExETH

partition

disjoint

Typing and Classification

Typing

 representation of entities

 defines format of data values

 defines operations

 defines inheritance properties

Classification

 roles of entities

 defines semantic groupings as

collections of values

 defines constraints among

collections

November 27, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

public class Person {

String name;

Date birthdate;

public Person(String name) {

this.name = name;

}

}

Person alex =

new Person("Alex de Spindler");

Collection<Person> friends =

new HashSet<Person>();

Collection<Person> coWorkers =

new HashSet<Person>();

friends.add(alex);

coWorkers.add(alex);

Typing and Classification

 Better understanding of issues
 important to recognise the two concepts even if they are somehow

merged together in a particular model or system

 Reduces complexity of type graphs
 no need to introduce subtypes to represent each classification

 Rich classification structures

 Support for relationships between objects
 associations over collections rather than embedded in objects

 Integration of database and programming languages

November 27, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Typing and Classification

November 27, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

{p1, p2} ⊆ {p1, p2, p3, p4}

p1

p2

Classification

Entities

Objects

Roles

Collections

represented by

employee

designer

T
y
p

in
g

Employees

Designers

Females

subtype

subcollection

Semantic Grouping

Typing and Classification

 Collections
 semantic groupings of objects

 Member types of collections
 constrain membership in a collection

 can define a view of objects accessed in context of collection

 Object evolution
 objects can gain and lose roles by being added to and deleted from

collections

 type change only required if an object is not an instance of member
type of collection

November 27, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

OM Data Model Layers

 OM distinguishes typing from classification based on a two-

layered Entity-Relationship model

 Type layer
 defines object representation

 multiple inheritance

 multiple instantiation

 Classification layer
 defines semantic groupings

 multiple classification

 collections and associations

November 27, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

OM Type Layer

 Objects are represented by object types
 object types define type units

 instances of object types have corresponding information units

 Objects can gain and lose types dynamically
 dress operation adds a type to an object

 strip operation removes a type from an object

 Multiple inheritance
 an object type can have multiple supertypes

 conflicts and name clashes must be handled by developer

 Multiple instantiation
 objects can have types from parallel inheritance hierarchies

 objects can have types that are completely unrelated

November 27, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

OM Type Layer

 Values of different types of types are supported in the OM

data model

 Base types
 define basic built-in values without identity

 string, integer, real, boolean, date, uri, ...

 Object types
 define representations of objects with identity

 Structured types
 define structure or record values without identity

 Bulk types
 define collection values of given member type without identity

November 27, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Object Types

November 27, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

organisation

description: string

contact

name: string

phone: string

fax: string

email: uri

www: uri

person

title: string

photo: uri

getWorkPlaces:

() → (locations: set of location);

private

birthdate: date

phone: set of sPhone

music: uri

transport: uri

getAge:

() → (years: integer);

ethperson

office: string

activities: set of string

location

building: string

street: string

postcode: string

city: string

country: string

photo: uri

map: uri

Type Units

 Each type defines a type unit

 direct correspondence to type

 no inherited fields

 Attributes have a name, a type

and a bulk

 uni

 set, bag, sequence, ranking

 Methods are managed

separately and linked to types

November 27, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

person

title: string

photo: uri

getWorkPlaces:

() → (locations: set of location);

private

birthdate: date

phone: set of sPhone

music: uri

transport: uri

getAge:

() → (years: integer);

ethperson

office: string

activities: set of string

person (title, string, uni), (photo, uri, uni)

ethperson (office, string, uni), (activities, uri, set)

private (birthdate, date, uni), (phone, sPhone, set), (music, uri, uni), (transport, uri, uni)

Information Units

November 27, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

o327

contact

name: "Moira C. Norrie"

phone: "+41 44 632 72 42"

...

person

title: "Prof."

...

ethperson

office: "IFW D 45.1"

...

private

birthdate: null

phone: { ("mobile", "+4179...") }

...

contact "Moira C. Norrie", "+41 44 632 72 42", ...o327

person "Prof.", ...o327

ethperson "IFW D 45.1", ...o327

private null, {("mobile", "+4179...")}, ...o327

Information UnitsObject

Browsing Objects

November 27, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

contact "Moira C. Norrie", "+41 44 632 72 42", ...o327

person "Prof.", ...o327

ethperson "IFW D 45.1", ...o327

private null, {("mobile", "+4179...")}, ...o327

person(o327)

name: "Moira C. Norrie"

phone: "+41 44 632 72 42"

...

title: "Prof"

...

private(o327)

name: "Moira C. Norrie"

...

title: "Prof"

...

birthdate: null

phone: {("mobile", "+4176...")}

ethperson(o327)

name: "Moira C. Norrie"

phone: "+41 44 632 72 42"

...

title: "Prof"

...

office: "IFW D 45.1"

...

Information Units

Instance person Instance ethperson Instance private

Dressing and Stripping Objects

 Objects can gain and lose type instances dynamically

 Dress operation creates an information unit of given

type, initialised it with null values, and adds it to object

 Strip operation removes an information unit of given type

and discards values stored in it

November 27, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

contacto327

persono327

ethpersono327

contacto327

persono327

contacto327

persono327

privateo327

strip dress

OM Classification Layer

 Classification is defined based on types from type layer

 Collections as a concept for semantic groupings
 collection membership constrained by type

 associations to link objects together

 multiple collections can share the same member type

 different types of collection behaviour

 kinds and roles

 Constraints to raise semantic expressiveness
 subcollection and supercollection constraints

 classification structures and classification constraints

 cardinality constraints to describe associations

 evolution constraints that govern object lifecycle

November 27, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Collections and Subcollections

November 27, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

person

Persons

contact

Contacts

person

ExETH

Contacts

contact(o212)

contact(o213)

contact(o214)

contact(o215)

Persons

person(o212)

person(o213)

person(o215)

ExETH

person(o212)

subset

subset

ext(Contacts) =

{ contact(o212), contact(o213),

contact(o214), contact(o215) }

ext(Persons) ⊆ ext(Contacts)

ext(ExETH) ⊆ ext(Persons)

Collection Behaviour

November 27, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Set Bag Sequence Ranking

person

Persons

book

< Books >

team

[Slides]

team

| Teams |

Persons

person(o111)

person(o112)

person(o113)

person(o114)

Books

book(211)

book(212)

book(212)

book(212)

book(213)

book(213)

Slides

slide(311)

slide(312)

slide(313)

slide(314)

slide(315)

slide(311)

Teams

team(411)

team(415)

team(413)

team(412)

team(416)

team(414)

no duplicates

no order

duplicates

no order

duplicates

order

no duplicates

order

Subcollection Behaviour

November 27, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

book

< Books >

book

< Novels >

total

book

[Books]

book

[Midprice]

strict

athletes

| Athletes |

athlete

| Midfield |

strict

book

< Books >

book

Individual

Books

equal

control duplicates

all copies of a novel

that are in Books are

also in Novels

{(b1,2), (b2,3), (b3,1)}

{(b1,2), (b3,1)}

control order

subcollection is a

strict subsequence

of supercollection

[b1, b1, b2, b2, b2, b3]

[b1, b2, b2, b2]

control order

subcollection is a

strict subranking of

supercollection

|a1, a2, a3, a4, a5, a6|

|a3, a4|

control membership

collection behaviour

is different, elements

are the same

{(b1,2), (b2,3), (b3,1)}

{b1, b2, b3}

Classification Structures

Disjoint Cover

November 27, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

person

Persons

ethperson

ETHPersons

person

ExETH

disjoint

No person can be employed by ETH and,

at the same time, have left ETH

ext(ExETH) ∩ ext(ETHPersons) = ∅

employee

Employees

employee

Programmers

employee

Managers

cover

Every employee is either a manager, a

programmer or both

ext(Managers) ∪ ext(Programmers) =
ext(Employees)

Classification Structures

Partition Intersection

November 27, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

A contact is either an organisation or a

person, but not both

ext(Organisations) ∩ ext(Persons) = ∅
⋀ ext(Organisations) ∪ ext(Persons)

= ext(Contacts)

Every person that is an employee and a

student is a teaching assistant

ext(Employees) ∩ ext(Students) =
ext(TeachingAssistants)

contact

Contacts

person

Persons

organisation

Organisations

partition

student

Students

employee

Employees

person

Teaching

Assistants

intersect

Associations

November 27, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

(0:*) (1:*)

SituatedAt

contact

Contacts

location

Locations

Contacts

contact(o212)

contact(o213)

contact(o214)

contact(o215)

Locations

location(o311)

location(o315)

SituatedAt

contact(o212)

contact(o213)

contact(o214)

location(o311)

location(o311)

location(o315)

Source or Domain

Collection

Target or Range

Collection

Relation Collection

(Binary Collection)

Associations

 Cardinality constraints
 (0:*) constraint on domain expresses that an organisation can be

situated at any number of locations

 (1:*) constraint on range expresses that each location has to be
associated with at least one organisation

 notation differs from the one commonly used in E/R models

 Behaviour
 relation collection of an association is a normal collection

 can be set, bag, sequence or ranking

 No ternary association and no relationship attributes
 OM does not support ternary or n-ary associations

 OM does not support attributes for associations

November 27, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Nested Associations

 Domain and range of an

association can be associations

 Can be used to model

 n-ary relationships

 relationship attributes

 Advantages

 decomposition of ternary relationship

into primary and secondary

association

 clearer semantics of cardinality

constraints

 allows uniform query language

constructs to be used

November 27, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

(0:*) (0:*)

Orders

project

Projects

part

Parts

Supplies

(1:*)

(1:*)

supplier

Suppliers

Kinds and Roles

 Kinds
 fundamental fixed classification

 similar to Stan Zdonik's notion of essential types but he does not
distinguish typing and classification and only has types to deal with
both representation and classification

 kinds can change if certain conditions fulfilled

 Roles
 roles change during entity lifecycles

 Kinds and roles also control the evolution of a database

November 27, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Example

November 27, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

staff

Staff

student

Students

person

Persons

student

Undergrads

student

Postgrads

staff

Non

Professors

staff

Professors

staff

Lecturers

staff

Seniors

Roles

Kinds

Classification Graphs

 C2 ≼ C1 denotes that C2 is a subcollection of C1

 For a collection C
 kinds C = { K | C ≼ K ∧ K is a kind }

 roles C = { R | C ≼ R ∧ R is a role}
= { R | C ≼ R ∧ R is not a kind }

November 27, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Controlling Evolution

 Assumptions
 each classification structure has a single root

 a root is a kind

 if C ≼ C1 and there is no C2 with C1 ≼ C2 then C1 is the maximal
collection of C

 each collection has a single maximal collection

 Migration x :: C1 → C2 valid if
a) x does not belong to a subcollection of C1

b) x can lose a kind only if it loses the contextual role of that kind
∀ K ∈ (kinds C1 − kinds C2): ∃ R ∈ roles K ⇒ R ∉ roles C2

November 27, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Migration Example

 x :: Postgrads → Lecturers
 no x can belong to a subcollection of Postgrads

 kinds Postgrads − kinds Lecturers
= {Postgrads, Persons} − {Persons} = {Postgrads}

 ∀ K ∈ {Postgrads}: ∃ R ∈ roles K ⇒ R ∉ roles Lecturers

 K = Postgrads
∃ R ∈ roles Postgrads ⇒ R ∉ roles Lecturers
∃ R ∈ {Students} ⇒ R ∉ {Lecturers, NonProfessors, Staff}

 Migration is valid

November 27, 2009 29Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Migration Example

 x :: Postgrads → Undergrads
 no x can belong to a subcollection of Postgrads

 kinds Postgrads − kinds Undergrads
= {Postgrads, Persons} − {Persons} = {Postgrads}

 ∀ K ∈ {Postgrads}: ∃ R ∈ roles K ⇒ R ∉ roles Lecturers

 K = Postgrads
∃ R ∈ roles Postgrads ⇒ R ∉ roles Undergrads
∃ R ∈ {Students} ⇒ R ∉ {Undergrads, Students}

 Migration is invalid

November 27, 2009 30Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Literature

 Moira C. Norrie: An Extended Entity-Relationship

Approach to Data Management in Object-Oriented

Systems, In: Proceedings of ER, 390-401, 1993

 Moira C. Norrie: Distinguishing Typing and

Classification in Object Data Models, In: Information

Modelling and Knowledge Bases VI, H. Kangassalo, H.

Jaakkola, K. Hori and T. Kitahashi, eds, IOS Press, 1995

 Alain P. Würgler: OMS Development Framework: Rapid

Prototyping for Object-Oriented Databases, PhD

Thesis, ETH No. 13512, 2000

November 27, 2009 31Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Next Week
Object Model Language: OML

• Collection Algebra

• Language Design

• Data Definition, Manipulation and Query Language

November 27, 2009 32Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

