
Object-Oriented Databases
Object Persistence

• Object-Relational Mappings and Frameworks

• Serialisation

• Persistent Programming Languages

September 25, 2009 1Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Principles of Persistence

 Data has to outlive the execution of the program

 Independence
 persistence of data object independent of how the program

manipulates that data object

 Data type orthogonality
 all data types should be allowed the full range of persistence

 Identification
 choice of how to provide and identify persistence at language level

independent of choice of data objects in language

 Implicitness
 data does not have to be moved or copied to be made persistent

September 25, 2009 2Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Uniformity

 Treat data values uniformly, independent of
 longevity

 size

 type

 Achieve uniformity for all aspects of system services
 data definition

 operations

 integrity

 concurrency control

 distribution

September 25, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Range of Persistence

1 Transient results in expression evaluation

2 Local variables

3 Global variables and heap items

4 Data that lasts a whole execution of a program

5 Data that lasts for several executions of several programs

6 Data that lasts for as long as a program is being used

7 Data that outlives a successions of versions of such a program

8 Data that outlives versions of the persistent support system

September 25, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Traditional Programming Languages

 Facilities for the manipulation of data whose lifetime does

not extend beyond activation of the program

 Storage of data requires mapping to and from files or

DBMS

relational

hierarchical

network

arrays

records

abstract data types

DBMS PL

September 25, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Disadvantages

 Effort to understand and manage mappings from program

data to stored data
 IBM Report (1978)

«30% of application code is concerned with transferring data to and
from files or DBMS»

 Data type protection of programming language system

often lost in the mapping

September 25, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Databases and Programming Languages

 Database and programming languages communities

research and develop products independently despite

having to provide many similar services

 Database focus
 preserve large volumes of data reliably

 support many processes operating against data efficiently

 Programming language focus
 help programmers be precise

 make programs understandable

September 25, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Databases and Programming Languages

 Separate development and consequent inconsistencies

tend to perpetuate and grow

 Intellectual and software investment in each camp goes

against adoption of other’s ideas

 View of database from programming language
 Mess of incomprehensible ad hoc design

 View of programming language from database
 Programming languages unhelpful with real problems such as bulk

types, persistence, concurrency and transactions

September 25, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Two Approaches

 Glue current underlying technologies together
 “glue-ware”, e.g. object-relational mappings and frameworks

 hide technologies behind sufficient “standard” interface

 underlying differences in semantics ultimately show through

 Complete computational environments
 Java object serialisation

 persistent programming languages

September 25, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Object-Relational Mappings

 Map object-oriented domain model to relational database

 Free developer of persistence-related programming task

 Hibernate
 maps Java types to SQL types

 transparent persistence for classes meeting certain requirements

 generates SQL for more than 25 dialects behind the scenes

 provides data query and retrieval using either HQL or SQL

 can be used stand-alone with Java SE or in Java EE applications

 Java Persistence API (JPA)
 Enterprise Java Beans Standard 3.0

 introduced annotations to define mapping

 javax.persistence package

September 25, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Designing an Object-Relational Mapping

OOP

RDBMS

OOP

RDBMS

OOP

RDBMS

OOP

RDBMS

Mapping

Top-down Bottom-up

Mapping

Inside-out Outside-in

Mapping Mapping

September 25, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Example Class Hierarchy

+getName(): String

+setName(name: String)

+getBirthday(): Date

+setBirthday(birthday: Date)

+getAge(): int

name: String

birthday: Date

Author

+getTitle(): String

+setTitle(title: String)

+getYear(): int

+setYear(year: int)

title: String

year: int

Publication

+getBeginPage(): int

+setBeginPage(page: int)

+getEndPage(): int

+setEndPage(page: int)

beginPage: int

endPage: int

Article

+getPrice(): double

+setPrice(price: double)

price: double

Book

0..* 0..*

September 25, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Mapping Classes

public class Author {

private long id;

private String name;

private Date birthday;

private Set<Publication> publications;

/**

* No-argument constructor is a required by Hibernate.

*/

Author() { }

public Author(String name) {

this.name = name;

this.publications =

new HashSet<Publication>();

}

...

}

September 25, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Mapping Classes

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>

<class name="ch.ethz.globis.oodb.hibernate.domain.Author" table="AUTHOR">

<id name="id" column="AUTHOR_ID">

<generator class="native" />

</id>

<property name="name" />

<property name="birthday" />

<set name="publications" table="AUTHORSPUBLICATIONS" cascade="all">

<key column="AUTHOR_ID" />

<many-to-many column="PUBLICATION_ID"

class="ch.ethz.globis.oodb.hibernate.domain.Publication" />

</set>

</class>

</hibernate-mapping>

September 25, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Mapping Associations

 Unidirectional and bidirectional associations

 Unordered and ordered associations

 Association cardinality types
 one-to-one

 many-to-one and one-to-many

 many-to-many

 Join Tables to map complex associations

CREATE TABLE AUTHOR(AUTHOR_ID BIGINT NOT NULL PRIMARY KEY, ...)

CREATE TABLE AUTHORSPUBLICATIONS(

AUTHOR_ID BIGINT NOT NULL,

PUBLICATION_ID BIGINT NOT NULL,

PRIMARY KEY(AUTHOR_ID, PUBLICATION_ID))

CREATE TABLE PUBLICATION(PUBLICATION_ID BIGINT NOT NULL PRIMARY KEY, ...)

September 25, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Mapping Inheritance

 Multiple strategies to map inheritance
 one table per class hierarchy

 one table per subclass

 one table per concrete class

 Mapping strategies can be mixed for different branches of

an inheritance hierarchy

 Implicit polymorphism
 one table per concrete class

 common interface is not mentioned in the mapping

 common properties are mapped in every table

September 25, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Mapping Strategies

 One Table Per Class Hierarchy

 One Table Per Subclass

 One Table Per Concrete Class

P D A B

+getTitle(): String

+setTitle(title: String)

+getYear(): int

+setYear(year: int)

title: String

year: int

Publication

+getBeginPage(): int

+setBeginPage(page: int)

+getEndPage(): int

+setEndPage(page: int)

beginPage: int

endPage: int

Article

+getPrice(): double

+setPrice(price: double)

price: double

Book P A B

P A P B

September 25, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

One Table Per Class Hierarchy

<class name="Publication" table="PUBLICATION">

<id name="id" type="long" column=" PUBLICATION_ID">

<generator class="native"/>

</id>

<discriminator column="PUBLICATION_TYPE" type="string"/>

<property name="title" column="TITLE"/>

<property name="year" column="YEAR"/>

<subclass name="Article" discriminator-value="ARTICLE">

<property name="beginPage" column="BEGIN_PAGE"/>

<property name="endPage" column="END_PAGE"/>

</subclass>

<subclass name="Book" discriminator-value="BOOK">

<property name="price" column="PRICE"/>

</subclass>

</class>

September 25, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

One Table Per Subclass

<class name="Publication" table="PUBLICATION">

<id name="id" type="long" column="PUBLICATION_ID">

<generator class="native"/>

</id>

<property name="title" column="TITLE"/>

<property name="year" column="YEAR"/>

<joined-subclass name="Article" table="ARTICLE">

<key column="PUBLICATION_ID"/>

<property name="beginPage" column="BEGIN_PAGE"/>

<property name="endPage" column="END_PAGE"/>

</joined-subclass>

<joined-subclass name="Book" table="BOOK">

<key column="PUBLICATION_ID"/>

<property name="price" column="PRICE"/>

</joined-subclass>

</class>

September 25, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

One Table Per Concrete Class

<class name="Publication">

<id name="id" type="long" column="PUBLICATION_ID">

<generator class="sequence"/>

</id>

<property name="title" column="TITLE"/>

<property name="year" column="YEAR"/>

<union-subclass name="Article" table="ARTICLE">

<property name="beginPage" column="BEGIN_PAGE"/>

<property name="endPage" column="END_PAGE"/>

</union-subclass>

<union-subclass name="Boook" table="BOOK">

<property name="price" column="PRICE"/>

</union-subclass>

</class>

September 25, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Using Annotations

 Java annotations have been

introduced in Java 5

 Enterprise Java Beans 3.0

includes Java Persistence API

 Uses Java annotations instead of

XML descriptors to capture

mappings

 Standardises object-relational

mappings

 Hibernate implements JPA

public class Author {

@Id @GenerateValue

private long id;

private String name;

private Date birthday;

@ManyToMany(fetch=FetchType.EAGER)

@JoinTable(

name="PUBLICATIONSAUTHORS",

joinColumns=@JoinColumn(

name="AUTHOR_ID",

referencedColumnName="id"),

inverseJoinColumns=@JoinColumn(

name="PUBLICATION_ID",

referencedColumnName="id")

)

)

private Set<Publication> pubs;

}

September 25, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Use of Database and Programming Language

Mapping 3

Simulation

(the normal programming activity)

Database

Program Real World

September 25, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Complete Computational Environments

 All data supported consistently whatever happens

 Programmers only have to understand one model and

maintain one mapping

Mapping 1

Simulation

(the normal programming activity)

Program Real World

September 25, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Java Programming Language

 Powerful object model

 Strong typing

 Automatic storage management

 Concurrency support

 Objects do not outlive execution of virtual machine

 Java object serialisation

September 25, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Java Object Serialisation

 Stores and retrieves objects in serial form

 Maintain type safety

 Extensible mechanism
 provide default mechanism

 per class implementation for customisation

 allow object to define its external format

 Persistence by reachability handles complex objects

 Intention
 data exchange

 "lightweight persistence"

 object archiving for later use by same program

September 25, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Java Object Serialisation Framework

 Interfaces for persistent object
 Serializable

 Externalizable

 Object streams to handle output and input
 ObjectOutputStream

 ObjectInputStream

 Interfaces defining output and input
 ObjectOutput extends DataOutput

 ObjectInput extends DataInput

September 25, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Java Object Serialisation

 No special methods have to be implemented

 Method writeObject of class ObjectOutputStream

 serialises objects

 traverses references to other objects in the object graph

 uses handles to preserve sharing and circular references

 Type information is stored together with objects

 Entire object graphs are read and written at same time

 Special handling is only required for
 arrays

 enum constants

 objects of type Class, ObjectStreamClass and String

September 25, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Java Object Serialisation

 A serialisable class must do the following
 implement the java.io.Serializable interface

 identify the fields that should be serialisable

 non-transient and non-static fields are serialised by default

 use the serialPersistentField member or the transient keyword

 have access to the no-argument constructor of its first non-
serialisable superclass

 Optionally, the class can define the following methods
 writeObject controls saved data or appends information

 readObject reads data corresponding to writeObject

 writeReplace nominates a replacement object to be written

 readResolve designates a replacement object when reading from
the input stream

September 25, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Java Object Serialisation Example

public class Address extends Serializable {

// Class Definition

}

// Serialise an object

FileOutputStream f = new FileOutputStream("tmp");

ObjectOutput out = new ObjectOutputStream(f);

out.writeObject(new Address());

out.flush();

out.close();

// Deserialise an object

FileInputStream f = new FileInputStream("tmp");

ObjectInput in = new ObjectInputStream(f);

Address address = (Address) in.readObject();

in.close();

September 25, 2009 29Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Versioning of Serialisable Objects

 Simple versioning of serialised objects supported

 Bidirectional communication between versions of a class

 Evolved class is responsible to maintain contract

established by non-evolved class
 evolved class must not break assumptions about the interface

provided by original version

 later version must provide sufficient and equivalent information to
allow earlier version to continue to satisfy non-evolved contract

 Compatible changes are changes that do not affect the

contract between the class and its callers

 Field serialVersionUID to identifies class version

September 25, 2009 30Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Incompatible and Compatible Changes

 Delete fields

 Move classes within the hierarchy

 Change non-static fields to static or

non-transient fields to transient

 Change declared type of a field

 Change writeObject and

readObject methods

 Change class from Serializable

to Extenalizable or vice-versa

 Change from non-enum type to

enum type

 Remove either Serializable or

Extenalizable

 Adding writeReplace or

readResolved method

 Add fields

 Add classes

 Remove classes

 Adding writeObject or

readObject method

 Remove writeObject or

readObject method

 Add Serializable

 Change access to a field

 Change static fields to non-static or

transient fields to non-transient

September 25, 2009 31Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Problems of Java Object Serialisation

 Not orthogonal
 serialisable classes need to implement a special interface

 Not complete
 class definition is not serialised along with objects

 problems with evolution and versioning

 Not persistent
 object identity is lost

 relationship between static and instance variables is lost

 Not scalable
 entire object graphs are serialised and deserialised

 Not transactional, recoverable nor concurrent

September 25, 2009 32Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Problems of Object Identity

 If two object graphs are stored in separate serialisations,

common substructures are duplicated when deserialised

 Similar effect occurs if a program re-reads data structure

while holding parts of the original structure in memory

 Programmer must take great care when hashing objects

Student

John

Student

Fred

Student

Mary

Course

OODB

Course

MPIS

September 25, 2009 33Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistent Programming Languages

 Orthogonal persistence
 all objects may be made persistent

 Completeness or transitivity
 everything needed to use persistent data must be preserved

 object behaviour must also be preserved

 persistence by reachability from named, persistent root objects

 Persistence independence
 indistinguishable whether code operating on transient or persistent

data

 semantics of the language must not change

 minimise what programmers have to learn to use persistence

September 25, 2009 34Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

PJama

 Persistent Java (PJama)
 University of Glasgow

 Sun Microsystems

 Assumptions
 Java is used as implementation language for many applications

 many applications will require long-term data management

 Goals
 Orthogonality, persistence independence, durability, scalability,

schema evolution, platform migration, endurance, openness,
transactional, performance

September 25, 2009 35Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

PJama Architecture

 Standard Java applications

 Persistence is provided by a

modified Java virtual machine

 object faulting

 promotion to persistence

 recoverable and transactional

operation

 Sphere

 persistent object store

 general purpose

 supports disk garbage collection,

evolution, …

Disk Disk Disk

Sphere

Store Adapter

Combined Object

Cache and Garbage

Collector Heap

Modified JVM

Java Application

September 25, 2009 36Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Creating Persistent Data

public class Department {

...

public static void main (String[] args) {

// start transaction

Course c = new Course("OODB");

Person p = new Person("Fred");

try {

PJavaStore pjs = PJavaStore.getStore();

pjs.newPRoot("OODB", c);

} catch (PJSException e) {

...

}

// implicit commit

}

}

September 25, 2009 37Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistence Independence

Hashtable courses = new Hashtable();

try {

PJavaStore pjs = PJavaStore.getStore();

pjs.newPRoot("Courses", courses);

} catch (PJSException e) {

...

}

...

Student student = new Student("Fred");

Course oodb = new Course("Object Oriented Databases");

Course webeng = new Course("Web Engineering");

courses.add(oodb.getTopic(), oodb);

oodb.attendedBy(student);

webeng.attendedBy(student);

...

courses.add(webeng.getTopic(), webeng);

...

September 25, 2009 38Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Accessing Persistent Objects

...

try {

PJavaStore pjs = PJavaStore.getStore();

Hashtable courses = (Hashtable) pjs.getPRoot("courses");

} catch (PJSException e) {

...

}

...

Course oodb = (Course) courses.get("Object Oriented Databases");

oodb.display();

...

September 25, 2009 39Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Achievements of PJama

 Type safety
 class information also stored in the persistent store

 direct or indirect object access through named persistent roots

 matching then performed of expected type and actual type

 Orthogonality
 achieved approximation good enough for many applications

 open issues with JDBC, CORBA and java.lang.Thread

 Persistence independence
 no changes to language, core classes or compiler

 persistence provided via additional API consisting mainly of methods
of class PJavaStore

September 25, 2009 40Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Achievments of PJama

 Durability
 recovery points through explicit "stabilize" calls

 Endurance
 Issues with recovery, schema evolution and platform migration that

require application to be restarted

 Transactional
 simple default model with implicit start and commit

 different transaction models possible through specialisation of the
class TransactionShell

 Performance
 modified JVM/JIT is 15%-20% slower than unmodified JVM/JIT

September 25, 2009 41Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Literature

 Christian Bauer and Gavin King: Java Persistence with

Hibernate, Manning Publications 2006

 M. Atkinson: Persistence and Java – A Balancing Act,

In: Proceedings of Conference on Objects and Databases,

Springer Verlag, 2000

September 25, 2009 42Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Next Week
db4o: Part 1

• Managing Databases, Storing and Retrieving Objects

• Query by Example, Native Queries, SODA

• Simple and Complex Objects, Activation, Transactions

September 25, 2009 43Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

