
Object-Oriented Databases
Commercial OODBMS: Versant

• Versant Object Database for Java

• Java Versant Interface (JVI)

• Versant Query Language (VQL)

November 6, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 1

Versant

 Company founded in 1988

 Object Database Management Systems
 highly scalable and distributed object-oriented architecture

 patented caching algorithm

 Versant Object Database (C, C++, Java and .NET)
 market leader in object databases

 current version 7.0.1

 available for many platforms

 high availability option and tools

 Versant FastObjects .NET (Microsoft .NET Framework 2.0)
 taken over from the merger with Poet in 2004

 current version 10.0

 5.5 MB memory footprint

November 6, 2009 2Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Worldwide Installations

 Telecommunications
 Alcatel-Lucent, AT&T, Ericsson, Siemens, Nortel, France Telecom,

Verizon, Samsung, Keymile, NEC

 Defense
 BAE Systems, Lockheed Martin, FGM, Qinetiq, Raytheon, Northrup

Grumman, Thales

 Financial services
 BNP/Paribas, JP Morgan, AMEX, ING Barings, LCH Clearnet

 Transportation
 British Airways, Sabre Group, Air France, GE Transportation,

Qantas, Amadeus

 Other
 Biomerieux, Factiva, EDS, Quantel, Oracle, Ovid, ESA

November 6, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Versant Object Manager

Versant Server

Versant Object Database Architecture

November 6, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Raw Devices, File Systems

RAID, SAN, NAS

Virtual System Layer

Versant Network Layer

Versant Network Layer

Versant C

Interface

Versant C++

Interface

Versant Java

Interface

Other Tools,

Interfaces etc.

Versant Dual Cache Architecture

November 6, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Daya

V
e
rs

a
n

t
C

li
e
n

t
V

e
rs

a
n

t
S

e
rv

e
r

User Interface

Application Logic

Versant Object
Manager

Front End
Profile

Object Cache

Versant Storage
Manager

Page Cache

Database Volumes

Back End
Profile

Roll-
Forward

Log

Logical Log File

Physical Log File

Versant Multi-Threaded Architecture

November 6, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Client Process Server Process

Client Process

Client
Thread

Client
Thread

Session Object
Object Cache

Client
Thread

Client
Thread

Session Object
Object Cache

Client
Thread

Session Object
Object Cache

Server
Thread

Server
Thread

Server
Thread

Page Cache

Lock

Table

asynchronous I/O of
non-commit buffer

writes

writes modified
pages to disk

Log Buffer
Thread

Background
Page

Flusher

Java Versant Interface (JVI)

 Provide easy-to-use storage of persistent Java objects
 pure Java syntax and semantics

 instances of nearly all classes can be stored and accessed

 works seamlessly with the Java garbage collector

 multiple threads can work in shared or independent transactions

 Client-server architecture
 provide access to the Versant object database

 client libraries cache objects for faster access and navigation

 database queries are executed on the server

 Support for Java Development Kit
 Version 6.0.5 supports JDK 1.3

 Version 7.0.1 supports JDK 1.4 and 1.5

November 6, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

V
e
rs

a
n

t
C

li
e
n

t
V

e
rs

a
n

t
S

e
rv

e
r

JVI Architecture

November 6, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

O
b

je
c

t
M

a
n

a
g

e
r

J
a
v
a
 V

M

TCP/IP

Java Object Cache Java Object Cache

Object Cache

JNI

Object Cache

JVI Layers

 Fundamental Layer
 database-centric

 objects manipulated indirectly through handles

 package com.versant.fund

 Transparent Layer
 language-centric

 layered on top of fundamental binding

 package com.versant.trans

 ODMG Layer
 language-centric

 ODMG database and transaction model, ODMG collections

 layered on top of transparent binding

 packages com.versant.odmg and com.versant.odmg3

November 6, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Application Development with Versant

 Develop Java classes
 make code “persistence aware”

 sessions, transactions and concurrency

 Create configuration file for enhancer program
 specify the persistence category for each Java class

 Compile Java classes to generate byte-code

 Run enhancer to make byte-code changes
 persistence behaviour inherited from base class
com.versant.trans.Persistent

 Create database

 Run application

November 6, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistence and Navigation Model

 Versant provides persistence by reachability

 Database root can be used to persist the root of an object

graph and assign it a name for retrieving it later
 supported in both transparent and ODMG binding

 intended to be applied to a relatively small number of objects

 makeRoot() creates root and stores object

 deleteRoot() removes root but does not delete object

 findRoot() retrieves root object

 Transparent navigation
 starts from identity, root object, class extent or query

 navigation is used to access associated objects

 Versant transparently locks and retrieves objects from database

 works across database boundaries

November 6, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

First and Second Class Objects

 First Class Objects (FCO)
 can be saved and retrieved independently as standalone objects

 have Logical Object Identifiers (LOID)

 can be the subject of queries

 changes to existing instances are saved automatically

 references to existing FCOs are always valid

 fields marked as transient are not saved in the database

 Second Class Objects (SCO)
 can be saved only as part of an FCO

 cannot be the subject of queries

 if a SCO does not have a corresponding Versant attribute type it is
stored as serialized Java byte stream

 fields marked with transient are not saved in the database

November 6, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistence Categories (FCO)

 Persistent always (p)
 becomes persistent at object instantiation itself

 object is automatically marked dirty when modified

 Persistence capable (c)
 new instances are initially transient, but may become persistent

 makeRoot(), makePersistent() or persistence by reachability

 object is automatically marked dirty when modified

 Superclass of a “p” or “c” class must also be “p” or “c”
 unless the superclass is Object

 note that this rule is recursive

November 6, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistence Categories (SCO)

 Transparent dirty owner (d)
 changes to object automatically mark its owner object as dirty

 used for serialized collections

 Persistence aware (a)
 can directly and transparently modify attributes of an FCO

 if a SCO of a FCO is modified, dirtyObject() must be called for
the FCO that contains the SCO in order to save it

 Not persistent (n)
 no byte code enhancement

 cannot directly access the fields of a persistent object

 access to such fields will throw an IllegalAccessError

November 6, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Connecting to a Database

 Applications perform database operations in sessions
 access to databases, methods, data types and persistent objects

 must be closed before application terminates

 one or more sessions can be open at the same time

 In each JVI layer, a session implementation exists

 Client session elements
 object cache

 cached object descriptor table

 Server session elements
 associated with each connected database is a page cache for

recently accessed pages

 server page cache is in shared memory of the machine containing
the connected database

November 6, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Transaction Model

 Upon starting a session, Versant is always in a transaction
 after commit() or rollback(), a new transaction is started

automatically

 endSession() commits the last transaction

 Transactions have the following characteristics
 atomic, consistent, independent, durable

 coordinated: objects are locked for coordination with other users

 distributed: two-phase commit for working with multiple databases

 ever-present: application code is always in a transaction

 Committing units of work
 commit() releases locks and flushes cache

 checkpointCommit() retains locks and retains cached objects

 commitAndRetain() releases locks and retains cached objects

November 6, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Object Lifecycle

 Creation of persistent objects
 Java objects are created in Java memory

 internal database information per object in the Versant object cache

 Commit
 object data written to database

 “hollow” proxy Java objects retained in memory space

 Rollback
 new database objects will be dropped

 Querying objects
 query passed to database server

 proxy object for every matching object in the result set

 Accessing objects
 Versant transparently fetches object or de-serializes the object

November 6, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Example

// use the transparent layer

TransSession session = new TransSession("PublicationsDB");

// find a previously defined root

Set< ? > publications = (Set< ? >) session.findRoot("publications");

// create a new author assuming that the Author class is either “p” or “c”

Author moira = new Author("Moira C. Norrie");

for (Object object: publications) {

Publication publication = (Publication) object;

publication.addAuthor(moira);

}

// commit the changes

session.commit();

// end the session

session.endSession();

November 6, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Updating Objects

 First Class Objects
 changes to first class objects are automatically applied to the

database upon commit

 database objects are modified transparently

 values of basic types are copied to database

 Second Class Objects
 Transparent Dirty Owner: changes to objects are automatically

applied to the database upon commit

 Persistent Aware: modification of SCO requires explicit dirty of
owner FCO using method TransSession.dirtyObject()

 the reason is that SCOs are serialised into owner FCO

 if a SCO is contained in two FCOs, this will lead to two instances of
the SCO in the Java memory after reloading the FCOs

November 6, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Deleting Objects

 First Class Objects
 delete explicitly with TransSession.deleteObject() and
TransSession.groupDeleteObjects()

 these methods refer to database objects, Java instances will be
garbage collected by the JVM

 JVM calls finalize() upon garbage collection, not deletion

 Second Class Objects
 deleted implicitly by setting reference to null

 memory will be garbage collected by the JVM

 upon commit, the containing FCO will not serialise the SCO

November 6, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

JVI Client Cache Loader

 Versant uses a client-side object cache
 contains query results and objects accessed through navigation

 server tracks which objects are cached by the clients

 Automatic object loading through closure
 given a starting point, closure is defined as the identification and

retrieval of related objects relative to the starting point

 each time an object is dereferenced, the object manager decides if
closure is required and will then locate and load the related object

 The JVI Client Cache Loader API can be used to control

how and when objects are loaded
 each dereference consists of network RPC, object lookup and I/O

 efficiency can be improved by loading multiple objects at once

 however, introduces vendor-specific code into domain classes

November 6, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Breadth, Depth and Path Loading

 Client closure helper classes provide two simple API calls
 groupReadObjects() and getClosure() in class Loader

 Load policies provide control outside of application code
 policies to control the loading of object specified in XML file

 XML “compiled” by Versant PolicyMaker utility

 load() in class Loader loads objects based on the specified policy

November 6, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Level 1

Level 2

Level 3

Breadth
D

e
p
th

Path

Versant Collections

 Storage of Java collections supported
 Array, Vector, Hashtable, LinkedList

 First class object (FCO) collections
 VVector, VHashtable

 Second class object (SCO) collections
 DVector

 Scalable large collections
 LargeVector

 ODMG collections

November 6, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Scalable Large Collections

 Classes DVector, VVector and VHashtable as well as

ODMG collections are implemented in the front-end
 mapped to attributes of type variable-length storage (vstr)

 performance issue with large number of objects in a collection

 Class com.versant.util.LargeVector

 implements the standard interface of Vector

 broken up into multiple nodes

 only needed nodes are brought to front-end on element access

 Locking issues
 more concurrency as not the whole object needs to be locked

 potential for deadlocks

 use locking protocol, e.g. update in ascending order only

November 6, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

ODMG Collections

 Follow the specification of the ODMG standard
 implemented in Versant as thin layer over the transparent binding

 collection classes also available from TransSession

 ODMG 2.0
 JDK 1.1 style collections

 Package com.versant.odmg

 ODMG 3.0
 JDK 1.2 style collections

 Package com.versant.odmg3

 Extend the java.util.Collection interfaces

 Versant recommends using this style of collections

 ODMG Collections are first class objects (FCO)

November 6, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

ODMG Collection Query Facilities

 ODMG collections provide additional query facilities

 VCollection implements java.util.Collection to

add query capabilities over collections
 boolean existsElement(String predicate)

 DCollection query(String predicate)

 Iterator select(String predicate)

 Object selectElement(String predicate)

 Queries over ODMG collections
 only objects in the collection are considered

 predicate is the where part of a VQL Query

 only persistent collections can be queried

November 6, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Versant Query Language (VQL)

 VQL 6
 VQL 6 queries are a subset of OQL as specified by ODMG 2.0

 no sorting, no extensions for new capabilities, limited API

 as of Versant 7.0, VQL 6 queries are deprecated

 VQL 7
 support for complex expressions

 support for server-side sorting

 improved indexing capabilities

 VQL queries are specified as a query string that is
compiled, optimised and executed on the database server

 Queries can be parameterised
 parameter starts with $ followed by characters, digits or underscores

 parameters are bound to values using the bind() method

November 6, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

VQL 7 Example

// create a new publication, assuming the Publication class is “p”

Publication pub = new Publication("Web 2.0 Survey");

// find authors Stefania Leone and Moira C. Norrie

String queryString = "select selfoid from Author where name = $name";

Query query = new Query(session, queryString);

query.bind("name", "Stefania Leone");

QueryResult result = query.execute();

Object author = result.next();

if (author != null) {

pub.addAuthor((Autor) author);

}

query.bind ("name", "Moira C. Norrie");

result = query.execute();

author = result.next();

if (author != null) {

pub.addAuthor((Author) author);

}

November 6, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

VQL 7 Example

// find all publications by Moira C. Norrie and Michael Grossniklaus

String queryString =

"select selfoid " +

"from Publication " +

"where Publication::authors subset_of $authors";

// precompile the query on the server

Query query = new Query(session, queryString);

// bind query to set of already existing author objects

query.bind("authors", new Object[] { moira, michael });

QueryResult result = query.execute();

// print out the names of the publications

for (Object pub = result.next; pub != null;) {

Publication p = (Publication) pub;

System.out.println(p.getTitle());

}

November 6, 2009 29Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Currently, collections can

neither contain strings nor

be parameters. Hence, this

example is not possible.

Event Notification

 Propagation of events from database to registered clients
 Java Beans event model

 callback to event listener objects

 Event types
 class events: create, modify or delete instance

 object events: modify or delete object or group of objects

 transaction demarcation: begin or end transaction

 user-defined events

 Application programming interface
 package com.versant.event

 sub-interfaces of VersantEventListener for each event type

 class EventClient provides client-side functionality

November 6, 2009 30Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Event Channels

 Events communication based on event channels
 abstraction for broadcasting an event notification

 event listeners are registered via a channel

 after creation, an application can “tune-in” to an event channel

 Global namespace for event channels
 persistent across client applications

 Categories
 class-based: class events for a specified set of classes

 object-based: object events for a specified set of objects

 query-based: class events for objects that match a specified query

 Channel management through EventClient
 create new event channel using ChannelBuilder

 access an existing event channel

November 6, 2009 31Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistent Object Hooks

 Allow intervention at all stages of state transitions of a

persistent object
 compute transient attributes

 build transient caches

 perform housekeeping tasks to preserve referential integrity

 Hook methods
 activate() and deactivate()

 preRead(boolean act) and postRead(boolean act)

 preWrite(boolean deact) and postWrite(boolean deact)

 Boolean parameter indicates whether object has been
activated/deactivated (true) or not (false)

 vDelete() when object is deleted

November 6, 2009 32Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Maintaining Referential Integrity

November 6, 2009 33Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

public class Author {

private String name;

private Date birthday;

private Set<Publication> authoredBy;

// delete hook that also removes publication of the deleted author

void vDelete() {

TransSession session = (TransSession)

TransSession.sessionOfCurrentThread();

for (Publication publication: this.authoredBy) {

session.deleteObject(publication);

}

}

...

}

Schema Evolution

 Support for schema evolution based on application

programming interface

 Fundamental binding
 inserting, appending, dropping, and renaming attributes

 adding and renaming classes

 Transparent binding
 method TransSession#setSchemaOption(int) to configure

automatic schema evolution

November 6, 2009 34Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

ClassHandle c = session.locateClass("Report");

c.renameClass("Form");

AttrString description = session.newAttrString("description");

AttrBuilder attribute = session.newAttrBuilder(description);

c.appendAttr(attribute);

Literature

 Versant Object Database
 http://www.versant.com/

November 6, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 35

Next Week
Commercial OODBMS: ObjectStore

• ObjectStore PSE Pro for C++

• Virtual Memory Architecture

• Managing Object Data

November 6, 2009 36Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

