
Object-Oriented Databases 
Version Models

• Temporal Databases

• Engineering Databases

• Software Configuration Systems

October 16, 2009 1Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Overview

 Various version models have been proposed to meet 

challenges from application domains
 temporal databases

 computer-aided design and computer-aided manufacturing

 software configuration and software engineering environments

 Evolution of version models
 very simple approaches at first

 complex and heterogeneous models emerged

 several efforts to unify terminology and define generic models

 Association with object-oriented databases
 version models as motivation for object-oriented databases

 some object-oriented databases provide versioning support

October 16, 2009 2Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Versioned Object

 Concept that has a number of states associated with it

 Different levels of granularity
 entire files

 individual tuples of a relation

 attributes of a class in object-oriented programming

 objects in object-oriented systems

 Each version is a possible representation of the object, 

corresponding directly to one of its states

 Interpretation of object states depends on application of 

version model

October 16, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Version Organisations

Set List Tree DAG

v1

v3

v2

v5

v4

v1

v3

v2

v5

v4

v1

v3v2

v4 v5

v1

v3v2

v4 v5

October 16, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



References

 Specific reference
 references single version of object directly

 Generic reference
 references entire object

 has to be dereferenced to a version when traversed

v1

v3v2

v4 v5

o1 v1

v3v2

v4

o2

generic

specific

October 16, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Storage Strategies

 Representing versions at the physical level
 storing complete versions of objects

 storing changes or deltas between versions

 Delta-based approaches come in several variations
 forward and backward deltas

 state-based and operation-based deltas

 Storage and retrieval performance of approaches
 approaches based on complete versions perform well when changes 

between versions are substantial

 delta-based approaches perform well when data changes little, but is 
not suited to store parallel versions

 space versus time performance

October 16, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Operation and Interaction Models

 Operations control evolution of versions of single objects
 create a new version of an object

 branch a parallel version of an object

 merge two parallel versions of an object

 delete a version of an object

 Interaction or transaction models support working with 

complex objects and objects graphs
 automatic versioning is transparent to the user

 library model uses check-out and check-in high-level operations

 long running and nested transactions

October 16, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Queries and Configurations

 Queries over versioned objects involve additional 

constraints to select correct representations

 Various implementations exist
 configurator evaluates rules against versioned object network

 declarative queries express constraints in extended language

 logical unification based on feature logic

 Dereferencing of generic references
 query evaluator needs to select specific version of an object

 main derivation guides generic access for parallel versions

 active versions guide generic access for sequential versions

 main derivation and active versions can be used in conjunction to 
dereference a generic reference

October 16, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Temporal Databases

 One of the first application domains for version models

 Manage different flavours of time-dependent data

 Vast field of research with numerous approaches
 conceptual models

 data models

 storage models

 temporal algebras

 query languages

 Research in temporal databases done mostly based on 

relational databases systems

October 16, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Time in Databases

 Different types of time can be used to characterise 

temporal data

 Transaction, registration or physical time
 captures when values were stored in the database

 AS-OF operation

 Valid or logical time
 used to express when values existed in real world

 WHEN operation

 User-defined time
 all aspects of time not covered by other two notions of time

October 16, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Classification of Temporal Databases

 Static or snapshot database
 conventional database

 does not manage temporal data

 Static roll-back database
 keeps track of transaction time

 supports AS-OF operation

 Historical database
 keeps track of valid time

 supports WHEN operation

 Temporal database
 keeps track of both transaction and valid time

 supports both AS-OF and WHEN operation

October 16, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Representing Temporal Data

Object Versioning

 object is extended with attribute 

capturing temporal dimension

 can be realised without violating 

the relational first normal form

Attribute Versioning

 each attribute is extended with 

temporal information

 requires non-first normal form 

NF2 relational systems

Employee

Charles C 56

Denise B 34

Anne A 12

Bob B 34

Office Salary

(6700, 1995, 2000)

(7500, 2000, 2006)

(7000, 2006, now)

(3000, 1990, 1995)

(5300, 1995, 2002)

(5500, 2000, now)

(4000, 2002, 2003)

(5500, 2003, now)

Employee

Charles C 56

Denise B 34

Anne A 12

Bob B 34

Office Salary

5500

4000

TS TE

2000 now

2002 2003

Bob B 34 5500 2003 now

Charles

Charles

Denise

C 56

C 56

B 34

6700 1995 2000

7500 2000 2006

7000 2006 now

3000 1990 1995

5300 1995 2002

October 16, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Conceptual and Data Models

 Early approaches extended existing models such as the 

relational model or the E/R model

 Bitemporal Conceptual Data Model (BCDM)
 tuple versioning

 implemented using four additional columns per tuple

 transaction time and valid time with special "until changed" and 
"now" values to indicate if a tuple is current

 query language TSQL2 is an extension of SQL that introduces a 
VALIDTIME and WHEN clause

 TSQL2 has been integrated into SQL3 as SQL/Temporal

October 16, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Homogeneous and Heterogeneous Models

 Temporal data model is homogeneous if the temporal 

domain does not vary from one attribute of an object to 

another

 All models that use tuple versioning are homogeneous

 Heterogeneous models can suffer from two anomalies
 if a horizontal anomaly is present, a versioned object is spread 

across several records in different data sets

 if a vertical anomaly is present, a versioned object is spread across 
several records of the same data set

 Anomalies also apply to object-oriented databases on the 

physical level

October 16, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Storage Models

 Temporal relation can be viewed 
as tree-dimensional data 
structure

 sequence of relations

 data cube

 Implemented using a two level 
store structures

 primary store contains current 

versions which satisfy all non-temporal 

queries

 history store hold the remaining 

history versions

 Traditional access methods 
cannot be used on such a 
storage model

October 16, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Two-Level Storage Structures

Reverse Chaining Accession Lists

Clustering Stacked Versions

C
e
ll

u
la

r 
C

lu
s
te

ri
n

g

(C
e
ll 

S
iz

e
 C

=
3
)

October 16, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Engineering Databases

 Developed for engineering application domains
 Computer-Aided Design (CAD)

 Computer-Aided Manufacturing (CAM)

 Support the development and maintenance of products

 Requirements
 data structures and concurrency control concepts to define and 

manage complex, often hierarchical, design objects

 versioning support for complex objects that supports iterative 
development by alternatives and trial-and-error experiments

 Two dimensional version models
 linear revision dimension

 non-sequential variation dimension

October 16, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Design Space Version Model

 Modelling primitives
 component hierarchies (is-a-part-of)

 version histories (is-a-kind-of, is-derived-from)

 configurations combine component hierarchies and version histories

 equivalences capture different representations of a “multi-facetted” 
design object

 Design management operations
 identifying the current version within a version history

 describing dynamic configurations

 managing the movement of objects among workspaces

 change and constraint propagation

 inheriting attributes from related design objects

October 16, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Early Approaches

 Extension of IBM System R relational database system 

with long fields and complex objects

 Long fields used to store and retrieve unstructured 

information of arbitrary length
 data is written and read using extended cursor concept

 iteration over stream representing data of a long field

 Complex objects manage several tuples as an object
 new column types COMP_OF, INDETIFIER and REF introduced

 component tuples reference other tuples of the same object or root 
tuple of another object

 concurrent access based on check-out/check-in model

October 16, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Software Configuration Systems

 Developed for software development
 Software Configuration Management (SCM)

 Software Engineering Environments (SEE)

 Software configuration systems manage product directly
 engineering databases only manage a product representation

 goal of fully automating process of building final product

 Also built around concept of design objects
 source code files

 modules of programs

 Management of references and dependencies more 

complex as hidden inside source code files

October 16, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Product Space

 Describes a product is organised
 does not take versioning into account

 several design choices available

 can be represented in different ways

 Software objects
 requirements specifications, designs, documentations, program 

code, test plans, test cases, user manuals, project plans, …

 object identification

 object granularity

 object representation

 Relationships
 composition relationships

 dependency relationships

October 16, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Product Space Representation

October 16, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Reidar Conradi and Bernhard Westfechtel: Version Models for Software Configuration Management, In: ACM Computing Surveys, 30(2), 232-282, 1998

 Logical structure
 module main imports a and b

 module a and b both import c

 product space may be represented in different ways

 File system
 each module is represented by multiple files

 dependencies and build information
are stored in separate file



Product Space Representation

October 16, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Reidar Conradi and Bernhard Westfechtel: Version Models for Software Configuration Management, In: ACM Computing Surveys, 30(2), 232-282, 1998

 Data model with type relationships
 composition tree with files as leaves

 dependencies are represented within tree

 build information can be computed from composition and 
dependency relationships



Product Space Representation

 Without spanning tree
 all files are summarised as one object

 only source dependencies are represented

 directly corresponds to the logical structure

October 16, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Reidar Conradi and Bernhard Westfechtel: Version Models for Software Configuration Management, In: ACM Computing Surveys, 30(2), 232-282, 1998



Version Space

 Version model defines how objects are versioned
 a versioned object is a container for a set of versions

 common properties shared by a versioned object (invariants)

 differences (deltas) between versions of a versioned object

 symmetric deltas

 directed deltas (changes)

 Definition of version set
 extensional versioning enumerates all members of the version set

 intensional versioning uses predicate defining version set members

 Intent of evolution
 revisions keep track of the history

 variants capture alternatives

 versions can also be used to support cooperation and collaboration

October 16, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Version Space Representation

 Graph

 Grid

October 16, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Reidar Conradi and Bernhard Westfechtel: Version Models for Software Configuration Management, In: ACM Computing Surveys, 30(2), 232-282, 1998



Literature

 Richard T. Snodgrass and Ilsoo Ahn: A Taxonomy of 

Time in Databases, In: Proceedings of ACM SIGMOD, 

236-246, 1985

 Randy H. Katz: Toward a Unified Framework for Version 

Modeling in Engineering Databases,

In: ACM Computing Surveys, 22(4), 375-409, 1990

 Reidar Conradi and Bernhard Westfechtel: Version 

Models for Software Configuration Management, 

In: ACM Computing Surveys, 30(2), 232-282, 1998

October 16, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Next Week
Storage and Indexing

• Type Hierarchy Indexing

• Aggregation Path Indexing

• Collection Operations

October 16, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch


