ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Object-Oriented Databases
Commercial OODBMS: ObjectStore

* ObjectStore PSE Pro for C++
* Virtual Memory Architecture
« Managing Persistent Object Data

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Progress ObjectStore

Both Java and C++ environments supported

ObjectStore Personal Storage Edition (PSE) Pro
lightweight object database
large, single-user databases
small memory footprint (~500kB)
multithreaded
embedded systems, mobile computing and desktop applications

ObjectStore Enterprise
high-performance, distributed, multi-user database
distributed, persistent, transactional object caching
clustering, online backup, replication, high availability

= Migration of applications to from PSE to Enterprise is easy

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

! !
ETH -

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

ObjectStore Architecture

= Virtual memory mapping architecture extends operating
system virtual memory architecture to provide persistence
logical versus physical address)
physical memory and secondary storage assumed knowledge from

—

page faulting operating system courses
address translation

-

= Characteristics of the ObjectStore architecture
virtual

shared
distributed
heterogeneous
persistent
transactional

November 13, 2009

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Virtual Memory Mapping Architecture

= Logical versus physical address
data is uniquely referenced within the database using a 4-part key

database segment cluster offset in cluster

yields a theoretical address space of 0...2128

data is mapped from this 128 bit range into a reserved area of the
database client application’s virtual memory (<< 2128 address space)

reserved area is called persistent storage region (PSR)

= Physical memory and secondary storage
all data accessed by client application must reside in PSR

cache serves as secondary storage for operating system (instead of
swap file) for persistent data mapped to logical address space

cache holds recently accessed data even across transactions

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n f

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Virtual Memory Mapping Architecture

= Page faulting
ObjectStore maps data into application when a fault interrupt occurs

data is paged into memory from cache if not in PSR or fetched from
the server if not in cache

demand paging is primary means by which data gets from database
Into cache and then into application

= Address translation
address translation is done when data is fetched into cache
retranslation can occur when PSR gets nearly full

updated pages are translated back to logical addressing schema
before being written back to database

trade-off: ability to use direct software pointers yields performance
and modelling advantages, but translating pointers and pre-reserving
address space has scalability implications

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Architecture Overview

Heap
(<b)
=
n

= PSR
c
2
O

Stack
(<B)
=
n
o
-
(¢b)
n

C++ Client

Session

~

Commseg

Informatik
Computer Science

Inf

Cache
Manager

Transaction Log

November 13, 2009

A 4

Database

ObjectStore
Server

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

Database

Informatik
Computer Science

ETH l'f

Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Server Side Components

= Server

serves out pages and enforces ACID semantics using “page permits”
co-operates with other servers in two-phase commits
automatic recovery mechanism when restarted

= Database

managed by one server (but server can manage multiple databases)
binary files storing pages of memory containing C++ objects
normally deployed in the file system on server-local discs

= Transaction Log

each server owns transaction log to which updated pages are written
pages only propagated to the database when transaction commits
used for automatic recovery, faster commits and MVCC mechanism

November 13, 2009

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Client-Side Components

= Client

C++ program linked with the ObjectStore libraries
Interacts with the database and manages objects
pages automatically fetched from database as needed and cached

= Cache

one cache memory mapped file per client process

has a fixed size that cannot change once the client has started

all pages fetched from the database by this client are held in cache
pages can be retained in the cache between transactions

= Commseg

one commseg memory mapped file per client process
contains meta-information about every page in the cache
stores permit and a lock for every page in the cache
permits can be retained between transactions

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH I_f !

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Client-Side Components

= Cache Manager

one cache manager process per client machine is shared by all
clients on that machine

handles permit revokes
reads/writes to cache and commseg files
not directly involved in page fetch in any way

= Persistent Storage Region

IS a reserved area of the virtual address space of the C++ program
address of persistent objects used by client mapped into PSR
value of pointers to persistent objects will be in the range of the PSR

at the end of every transaction the PSR is cleared and can be
reused for the next transaction

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n f

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Fetching and Mapping Pages

= Client automatically fetches and maps pages
pages are fetched “lazily” as needed
pages are held in the client cache

= Pointer swizzling used to translate logical addresses on
fetched page into physical addresses within PSR
C++ pointers to already fetched objects
C++ pointers to ranges pre-reserved for yet-to-be fetched objects

= Server permits and client locks acquired automatically to
ensure transaction consistency

= EXIsting page swapped out if not enough room Iin cache to
hold new page
updated pages are sent to the server
read-only pages are dropped from cache as copy exists in database

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n f

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Fetching and Mapping Pages

= QObjectStore installs SIGSEGV Code ObjectStore Cache
(segment violation) handler Heap
= Program obtains pointer p to X

object on page X
= Dereferencing p causes the
SIGSEGV handler to be called

= Virtual mapping table is
consulted and page fetched from
server and stored in the cache

= Page x is mapped to the address
space and execution continues D

PSR

v handler (void *ptr)

| X
Stack

Address Space ObjectStore Database

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH l'f

Informatik
Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Computer Science

Cache-Forward Architecture

= Key to ability of ObjectStore to provide high performance
data is cached across transaction boundaries
number of times locks must be acquired is reduced
cached data is kept in a globally consistent state

= ObjectStore maintains two types of locks on pages
transaction locks represent the state of a page during transaction
ownership permits represent the state of a page in the cache

= Permits are tracked by server and locks are taken by client
server serves permits on pages that are sent to the client
a client can then lock pages according to the given permit

November 13, 2009

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Shared Virtual Memory

Server s
ObjectStore ends page

Client

ObjectStore
Server

ObjectStore
Client

client asks for page i’

i nf Informatik
Computer Science
permlt revoke
negative/ posmve
ObjectStore
Client
ObjectStore

Client

= ObjectStore uses a lazy call-back mechanism for permits
= Server maintains a table of permits assignments to clients

= When a client requests a page from the server
server checks for other clients with permit for page and permit types
server issues call-back if one or more clients have conflicting permits

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Page Permits and Locks

[
I nf Informatik
Computer Science

. Read permi

client can lock page for reading read
without consulting the server

many clients can hold a read permit
for a page simultaneously

= \Write permits read
client can lock page for reading or

. . . write
writing without asking the server
only one client can hold a write permit
for a page at any given time _
. . write
= Cache manager inspects permit :
and lock status for call-back write

v POSITIVE

X NEGATIVE (but permit is flagged
to be revoked at transaction end)

read x

server only calls
back permit if other
client needs to write

no lock v

read v
permit for page
downgraded to read

write x

no lock v

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Distribution and Heterogeneity

i

-

-'
Solaris C++ Windows Solaris C++ Linux C++ HP-UX C++ Windows
Client C++ Client Server Client Server C++ Client

= Clients can access objects in different remote databases in
the same transaction

= Clients and servers can run on different platforms

physical object layout transformed automatically by client runtime
when page mapped into cache

database records which platform wrote to each page last

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Persistence

[
I nf Informatik
Computer Science

= ObjectStore uses persistence by instantiation in C++

= QOverloaded persistent new operator takes three arguments
allocation of the new object
type spec of the new object
optionally, how many objects are to be allocated
= Several options for object allocation
transiently on the heap

database

segment

cluster

next to another object

-

Note: given the virtual memory architecture
it is helpful to co-locate objects which are
used together to achieve high performance
designs and implementations

= Persistence is orthogonal to the type of an object and one
codebase can be used for transient and persistent objects

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Transactions

= Support for basic ACID properties of transactional systems
= Atomicity
after commit it is guaranteed that data was written and is recoverable
after abort all changes are undone

= Consistency
it is impossible to apply or lose updates while data is being written
= |solation

serialisability (CPSR) is guaranteed by two-phase locking (2PL)

Multi-View Concurrency Control (MVCC) provides serialisability for
read-only transactions using snapshots instead of locks

= Durability
changes are written to the transaction log first
background process propagates changes to the database

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Transaction Types

= Read or Write
Read transaction throws an exception if a page write lock is
requested

= Local or Global

Local only allows the initiating thread to execute
Global allows all threads in a session to share the transaction

= Lexical or Dynamic
Lexical transactions automatically retry on deadlock
Lexical must start and end in same code block
Lexical transactions are always thread-local
Dynamic transactions are the lower level os_transaction class
Dynamic transactions are better suited to multi-threaded applications

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n f

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Database Layout

= Memory pages held in hierarchy
of clusters within segments

eamem ... = Segments

' i Database Schema | | Database Roots ¥ : : e :
e » 1 define logical partitioning of objects

' | O O O . Segment 0: schema segment contains
et database schema and database roots
osegmentz Segment 2: default segment

| Segment 4: first user-created segment
maximally 232 segments per database
:_L:'i':'i':'i'ii'i':'i':'fﬁfﬁfﬁfﬁffifﬁ':'i':'i':';_'iEiff:i?fifi?fffiffﬁfﬁ:: = Clusters

| Segment 4 ! _
e e e group closely related objects

each segment has a default cluster 0,

' other clusters created by user

' l:_"_'_"_':_':_"_':_':_"_'_"_'i_L:_':_':_"_'_"_':_':_"_':_':I_i'_"_'_"_':_':_':_"_':_':_':_'I_: maX|ma.”y 231 C|US'[€I‘S per Segment

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n f

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Developing Applications

= Programmer uses the ObjectStore libraries

objectstore ObjectStore runtime

os_database database management functionality

os_ transaction transaction handles and functionality
os_typespec functionality to determine type specification
os _database root creation, retrieval and removal of roots
os_segment segment access and management

os cluster cluster access and management

= Development process
writing of persistent classes, schema file and application logic
compilation of schema file with pssg compiler
compilation of classes with C++ compiler
linking of object code

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n f

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Managing Databases

#include <os_pse/ostore.hh>

int main(int argc, char **argv, char **envp)
{
objectstore: :initalize() ;
os_database *db = os_database::create('"publications.db", 0664, 1);

db->save() ;

db->close() ;
db->destroy() ;
objectstore: :shutdown () ;

}

= Database management is provided by os_database
create () creates a new database
open () opens an existing database
save () saves the database and makes changes permanent
close () closes an open database, but does not save state

destroy () deletes a database

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Transactions

objectstore: :initialize() ;
os_transaction::initialize();
os_database *db = os_database::open("publications.db", 0, 1);

OS_BEGIN_TXN(txn0, 0, os_transaction::update)
{

os_transaction *txn = os_transaction::get_current();
txn->abort () ;

}
OS_END_TXN (txn0)

= Transaction functionality is provided by os_transaction

all interactions with the database must be in a transaction
transactions can be nested arbitrarily

= Ways of defining and working with transactions
directly using class os_transaction (dynamic)
using macros provided with the ObjectStore libraries (lexical)

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Running Example

November 13, 2009

Author

name: String
birthday: Date

<_>——authors——
0.*

0.~*

+getName(): String
+setName(name: String)
+getBirthday(): Date
+setBirthday(birthday: Date)
+getAge(): int

Inf

Publication

title: String
year: int

+getTitle(): String

+setTitle(title: String)

+getYear(): int

+setYear(year: int)

Informatik
Computer Science

Article

Book

beginPage: int
endPage: int

price: double

+getEndPage(): int

+getBeginPage(): int
+setBeginPage(page: int)

+setEndPage(page: int)

+getPrice(): double
+setPrice(price: double)

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Class Author

class Author
{
private:
const char *_ name;
time_t _birthdate;
public:
// Constructor and destructor
Author (const char *name) ;
~Author () ;
// Getters and setters
const char* getName () const;
void setName (const char *name) ;
const struct tm* getBirthdate() const;
void setBirthdate (int day,
int month, int year);
// Derived methods
int getAge() const;

November 13, 2009

[
I nf Informatik
Computer Science

#include "Author.h"

Author: :Author (const char *name)
{
this->setName (name) ;
_birthdate = 0;

Author: : ~Author (void)
{
if (_name) {
delete [] _name;
_name = 0;

const char* Author: :getName ()

{

return _name;

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Creating Persistent Objects

= Objects in the database are created with the overloaded
persistent new operator

creating a single persistent object

os_database *db = os_database::open("publications.db", 0, 1);

Author *scheel = new(db, os_ts<Author>::get()) Author("Matthias Geel");
db->close() ;

creating a persistent array of objects

void Author: :setName (const char* name)
{
delete [] _name;
_name = 0;
if (name) {
int length = static cast<int>(strlen(name)) + 1;

_name = new(os_cluster::of (this), // allocate in the same cluster
os_typespec::get char(), // get char type spec

length) char[length]; // create an array of size length
strcpy s (_name, length, name);
_name[length] = 0;
}

November 13, 2009

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Updating and Deleting Persistent Objects

os_database *db = os_database::open("publications.db", 0, 1);

Author *moira = new(db, os_ts<Author>::get()) Author("Moira Norrie");
moira->setName ("Moira C. Norrie');

db->save () ; // page with updated version of object is sent to server

delete moira;
moira = 0;

db->save () ; // page without the object is sent to server

= Changes to persistent objects are propagated to database
automatically when pages are sent back to server

client application updates memory-mapped version of persistent
objects using standard C++

persistent objects are deleted by deleting the memory-mapped
version of object using standard C++

= Fully transparent to the application developer

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Collections and Relationships

// Forward declaration // Forward declaration

class Publication; class Author;

class Author class Publication

{ {

private: private:
friend class Publication; friend class Author;
os_Set<Publication*>* authors; os_List<Author*>* authoredBy;

public: public:
void addPublication (Publication *p) ; void addAuthor (Author *a) ;
void removePublication (Publication *p) ; void removeAuthor (Author *a) ;

}; };

= Relationships between classes modelled as collections

= ObjectStore collection facility
a library of non-templated and templated collection types

traversal, manipulation, and retrieval functionality
represented by class os_collection

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Collection Hierarchy

[0s_collection J<

A
[os_Collection<E>]

: 0s_set t
: 0s_bag 0S_Set<E>
: os_list os_Bag<E>
: 0S_array 0S_List<E>
: os_dictionary os_Array<E>

T (os_Dictionary<K, V> \

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -

Informatik
Eidgendssische Technische Hochschule Zirich Computer Science
Swiss Federal Institute of Technology Zurich

Collections Example

= Creating a collection

Author: :Author (const char *name)

{

_authors = new(os_cluster: :of (this),

os_Set<Publication*>::get_os_typespec()) os_Set<Publication*>();
}

= Accessing and manipulating a collection

void Author: :addPublication (const Publication *p)

{
_authors->insert ((Publication*) p);
os_List<Author*> *authoredBy = p-> authoredBy;
authoredBy->insert (this) ;

}

= Deleting a collection

Author: : ~Author (void)
{

delete _authors;
_authors = 0;

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Ccursors over Collections

const os_Set<Publication*>* Author::getPublications() const
{

os_Set<Publication*> *result = new(
os_database::get_ transient database(),

os_Set<Publication*>::get_os_typespec()) os_Set<Publication*>();
os_Cursor<Publication*> c(*_authors);

for (Publication *publication = c.first(); c.more(); publication = c.next()) {
result->insert (publication) ;

}

return result;

= Cursors are used to navigate and manipulate collections
represented by class os_Cursor

first() positions the cursor at the first element
next () moves the cursor to the next element
more () returns true if the cursor points to an element

= Cursor can be reused by rebinding it to another collection

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n f

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Queries over Collections

// Find all authors younger than 30 with more than 10 publications

char* query = "this->getAge() < 30 && this->getPublicationCount() > 10";
os_Set<Author*> &result = _authors->query("*Author", query, _db);

os_Cursor<Author*> c(result);
for (Author *author = c.first(); c.more(); author = c.next()) {
cout << author->getName () << endl;

}

= Queries are evaluated over collections by specifying the

element type, query string and schema database

guery string indicates the selection criterion, either specified in C++
or as a pattern matching expression

support for function calls in query strings restricted to basic types
support for nested queries

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Database Roots

Author* Database: :retrieveAuthor (const char *name)

{

os_Dictionary<char*, Author*> *authors = 0;

os_database_root *root = _db->find root("authors");

if ('root) {

root = _db->create_root("authors");

authors = new(_db, os_Dictionary<char*, Author*>::get os_typespec())
os_Dictionary<char*, Author*>();

root->set_value (authors) ;

}
authors = (os_Dictionary<char*, Author*>*) root->get value();

return authors->pick((char*) name) ;

}
= Database roots are persistent objects which have been

labelled with a well-known name

= Represented by class os_database root

root name held as a char*
pointer to the object of interest held as a void*

Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

November 13, 2009

ETH -
Eidgendssische Technische Hochschule Zirich I n

Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Literature

= ObjectStore
http://www.progress.com/objectstore/

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

ETH -
Eidgendssische Technische Hochschule Zirich I n
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Next Week
Commercial OODBMS: Objectivity/DB
* Objectivity/DB for .NET

* Logical Storage Model: Federated Databases
» Language Integrated Queries (LINQ)

:l(:’: W HA
RN
HIRHTTHH AR
{: 4 .' LT \\‘\\\‘\\

November 13, 2009 Michael Grossniklaus — Department of Computer Science — grossniklaus@inf.ethz.ch

