
2 December 2005

Introduction to Databases
Object and Object-Relational Databases

Prof. Beat Signer

Department of Computer Science

Vrije Universiteit Brussel

http://vub.academia.edu/BeatSigner

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 2May 10, 2010

Impedance Mismatch Revisited

ÁCombination of SQL with a host language
Ámix of declarative and procedural programming paradigms

Á two completely different data models

Ádifferent set of data types

ÁInterfacing with SQL is not straightforward
Á data has to be converted between host language and SQL due to

the impedance mismatch

Á~30% of the code and effort is used for this conversion!

ÁThe problem gets even worse if we would like to use an

object-oriented host language
Á two approaches to deal with the problem

- object databases (object-oriented databases)

- object-relational databases

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 3May 10, 2010

Impedance Mismatch Revisited ...

ÁNote that it would be easier to use the SQL AVG operator

public float getAverageCDLength () {
float result = 0.0 ;
try {

Connection conn = this .openConnection ();
Statement s = conn.createStatement ();
ResultSet set = s.executeQuery ("SELECT length FROM CD");
int i = 0;
while (set.next ()) {

result += set.getInt (1);
i ++;

}
return result/ i ;

} catch (SQLException e) {
System.out.println ("Calculation of average length failed.");
return 0;

}
}

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 4May 10, 2010

Object Databases

ÁODBMSs use the same data model as object-oriented

programming languages
Á no object-relational impedance mismatch due to a uniform model

ÁAn object database combines the features of an object-

oriented language and a DBMS (language binding)
Á treat data as objects

- object identity

- attributes and methods

- relationships between objects

Á extensible type hierarchy

- inheritance, overloading and overriding as well as customised types

Á declarative query language

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 5May 10, 2010

Persistent Programming Languages

ÁSeveral approaches have been proposed to make

transient programming language objects persistent
Á persistence by class

- declare that a class is persistent

- all objects of a persistent class are persistent whereas objects of

non-persistent classes are transient

- not very flexible if we would like to have persistent and transient objects

of a single class

- many ODBMS provide a mechanism to make classes persistence capable

Á persistence by creation

- introduce new syntax to create persistent objects

- object is either persistent or transient depending on how it was created

Á persistence by marking

- mark objects as persistent after creation but before the program terminates

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 6May 10, 2010

Persistent Programming Languages ...

Á persistence by reachability

- one or more objects are explicitly declared as persistent objects (root objects)

- all the other objects are persistent if they are reachable from a root object via

a sequence of one or more references

- easy to make entire data structures persistent

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 7May 10, 2010

ObjectStore Example

ÁPersistence by reachability via specific database roots

ÁPersistence capable classes
Á post-processor makes specific classes persistent capable

ÁPersistent aware classes
Á can access and manipulate persistent objects (not persistent)

ÁThree states after a persistent object has been loaded
Á hollow: proxy with load on demand (lazy loading)

Á active: loaded in memory and flag set to clean

Á stale: no longer valid (e.g. after a commit)

Person ariane = new Person("Ariane Peeters")
db.createRoot("Persons" , ariane);

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 8May 10, 2010

ObjectStore Example ...

ÁPost processing
(1) compile all source files

(2) post-process the class files to generate annotated versions of
the class files

(3) run the post-processed main class

javac *.java

osjcfp ðdest . ðinplace *.class

java mainClass

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 9May 10, 2010

ODBMS History

ÁFirst generation ODBMS
Á 1986

- G-Base (Graphael, F)

Á1987

- GemStone (Servio Corporation, USA)

Á 1988

- Vbase (Ontologic)

- Statice (Symbolics)

ÁSecond generation ODBMS
Á 1989

- Ontos (Ontos)

- ObjectStore (Object Design)

- Objectivity (Objectivity)

- Versant ODBMS (Versant Object Technology)

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 10May 10, 2010

ODBMS History ...

Á 1989

- The Object-Oriented Database System Manifesto

ÁThird generation ODBMS
Á1990

- Orion/Itasca (Microelectronis and Computer Technology Cooperation, USA)

- O2 (Altaïr, F)

- Zeitgeist (Texas Instruments)

ÁFurther developments
Á 1991

- foundation of the Object Database Management Group (ODMG)

Á 1993

- ODMG 1.0 standard

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 11May 10, 2010

ODBMS History ...

Á 1996

- PJama (Persistent Java)

Á 1997

- ODMG 2.0 standard

Á 1999

- ODMG 3.0 standard

Á 2001

- db4o (database for objects)

Á ...

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 12May 10, 2010

The Object-Oriented Database Manifesto

ÁThere have been different attempts to

define object-oriented databases

ÁOne of the efforts was the Object-Oriented

Database System Manifesto by

Atkinson et. al
Á defines 13 mandatory features that an

object-oriented database system must have

- 8 object-oriented system features

- 5 DBMS features

Á optional features

- multiple inheritance, type checking, versions, ...

Á open features

- points where the designer can make a number of choices

Malcolm Atkinson

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 13May 10, 2010

The Object-Oriented Database Manifesto ...

ÁObject-oriented system features
Á complex objects

- complex objects built from simple ones by constructors (e.g. set, tuple and list)

- constructors must be orthogonal

Á object identity

- two objects can be identical (same object) or equal (same value)

Á encapsulation

- distinction between interface and implementation

Á types and classes

- type defines common features of a set of objects

- class as a container for objects of the same type

Á type and class hierarchies

Á overriding, overloading and late binding

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 14May 10, 2010

The Object-Oriented Database Manifesto ...

Á computational completeness

- should be possible to express any computable function using the DML

Á extensibility

- set of predefined types

- no difference in usage of system and user-defined types

ÁDBMS features
Á persistence

- orthogonal persistence (persistence capability does not depend on type)

Á secondary storage management

- index management, data clustering, data buffering, access path selection and

query optimisation

Á concurrency

- atomicity, consistency, isolation and durability (ACID)

- serialisability of operations

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 15May 10, 2010

The Object-Oriented Database Manifesto ...

Á recovery

- in case of hardware or software failures, the system should recover

Á ad hoc query facility

- high-level declarative query language

ÁThe OODBS Manifesto lead to discussion and reactions

form the RDBMS community
ÁThird-Generation Database System Manifesto, Stonebraker et al.

ÁThe Third Manifesto, Darwen and Date

ÁIssues not addressed in the manifesto
Á database evolution

Á constraints

Á object roles

Á ...

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 16May 10, 2010

ODMG

ÁObject Database Management

Group (ODMG) founded in 1991

by Rick Cattell
Á standardisation body including all major

ODBMS vendors

ÁDefine a standard to increase the portability

accross different ODBMS products
ÁObject Model

ÁObject Definition Language (ODL)

ÁObject Query Language (OQL)

Á language bindings

- C++, Smalltalk and Java bindings

Rick Cattell

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 17May 10, 2010

ODMG Object Model

ÁODMG object model is based on the OMG object model

ÁBasic modelling primitives
Á object: unique identifier

Á literal: no identifier

ÁAn object's state is defined by the values it carries for a

set of properties (attributes or relationships)

ÁAn object's behaviour is defined by the set of operations

that can be executed

ÁObjects and literals are categorised by their type

(common properties and common behaviour)

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 18May 10, 2010

Types

ÁSpecification
Á properties (attributes and relationships)

Á operations

Áexceptions

ÁImplementation
Á language binding

Á a specification can have more than one implementation

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 19May 10, 2010

Type Specifications

ÁInterface defines only abstract behaviour
Á attribute declarations in an interface define only abstract

behaviour (can be implemented as a method!)

ÁClass defines abstract behaviour and abstract state

ÁLiteral defines abstract state

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 20May 10, 2010

Objects

ÁAtomic objects
Á user defined

Á no built-in atomic object types

ÁCollection objects
Á Set<t>

Á Bag<t>

Á List<t>

Á Array<t>

Á Dictionary<t,v>

ÁStructured objects
Á Date , Interval , Time , Timestamp

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 21May 10, 2010

Literal Types

ÁAtomic literals
Á long , long long , short , unsigned long , unsigned short ,

float , double , boolean , octet , char , string , enum

ÁCollection literals
Á set<t>

Á bag<t>

Á list<t>

Á array<t>

Á dictionary<t,v>

ÁStructured literals
Á date , interval , time , timestamp

Á user defined structures (struct)

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 22May 10, 2010

Relationships

ÁOne-to-one, one-to-many or many-to-many relationships

with referential integrity maintained by the system

class Assistant {
...
relationship set <ExerciseGroup> leads

inverse ExerciseGroup::isLeadBy;
...

}

class ExerciseGroup {
...
relationship Assistant isLeadBy

inverse Assistant::leads;
...

}

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 23May 10, 2010

Behaviour

ÁBehaviour is specified as a set of operation signatures

ÁAn operation signature defines
Á name of the operation

Ánames and types of arguments

Á type of return value

Á names of exceptions

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 24May 10, 2010

Inheritance of Behaviour

ÁA subtype may
Á define new behaviour in addition to the one defined in its

supertypes

Á refine a supertype's behaviour

interface Contact {...}
interface Person : Contact {...}
interface ETHPerson : Person {...}

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 25May 10, 2010

Inheritance of State and Behaviour

ÁKeyword EXTENDS

ÁA subclass inherits all the properties and behaviour of its

superclass

interface Contact {...}
interface Student {...}
class Person : Contact {...}
class ETHPerson

extends Person : Student {...}

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 26May 10, 2010

Object Definition Language (ODL) Example

Assistant Professor

Employee Salary

Lecture Exercise

Session

Course

StudentI

Student
teaches

isTaughtBy

leads

isLeadBy

hasPrerequisites

isPrerequisiteFor

attends

isAttendedBy

hasSessions

isSessionOf

one-to-one

many-to-many

one-to-many

is-a

extends

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 27May 10, 2010

ODL Example ...

module Education {
exception SessionFull{};
...

class Course (extent courses) {
attribute name;
relationship Department offeredBy

inverse Department::offers;
relationship list <Session> hasSessions

inverse Session::isSessionOf;
relationship set <Course> hasPrerequisites

inverse Course::isPrerequisiteFor;
relationship set <Course> isPrerequisiteFor

inverese Course::hasPrerequisites;
};

class Salary (extent salaries) {

attribute float base;
attribute float bonus;

};

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 28May 10, 2010

ODL Example ...

class Session (extent sessions) {
attribute string number;
relationship Course isSessionOf

inverse Course::hasSessions;
relationship set <Student> isAttendedBy

inverse Student::attends;
};

class Lecture extends Session (extent lectures) {
relationship Professor isTaughtBy

inverse Professor::teaches;
};

class Exercise extends Session (extent exercises) {
attribute unsigned short maxMembers;
relationship Assistant isLeadBy

inverse Assistant::leads;
};

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 29May 10, 2010

ODL Example ...

interface StudentI {

attribute string name;
attribute Address address;
relationship set <Session> attends

inverse Session::isAttendeBy;
};

class Student : StudentI (extent students) {
attribute Address address;
relationship set <Session> attends

inverse Session::isAttendedBy;
};

class Employee (extent employees) {
attribute string name
attribute Salary salary;
void hire();
void fire() raises (NoSuchEmployee);

};

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 30May 10, 2010

ODL Example ...

class Professor extends Employee (extent professors) {
attribute enum Type{assistant, full, ordinary} rank;
relationship worksFor

inverse Department:hasProfessors;
relationship set <Lectures> teaches

inverse Session::isTaughtBy;
};

class Assistant extends Employee : StudentI (extent assistants) {
attribute Address address;
relationship Exercise leads

inverse Exercise::isLeadBy
relationship set <Session> attends

inverse Session::isAttendedBy;
};

