From TPC-C to Big Data Benchmarks:
A Functional Workload Model

Yanpei Chen!, Francois Raab?, and Randy Katz>

! Cloudera & UC Berkeley, yanpei@cloudera.com,
2 InfoSizing, francois@sizing.com,
3 UC Berkeley, randy@eecs.berkeley.edu,

Abstract. Big data systems help organizations store, manipulate, and
derive value from vast amounts of data. Relational database and MapRe-
duce are the two most prominent technologies for such systems. Orga-
nizations use them to perform complex analysis on diverse and uncon-
ventional data types with fast growing data volumes. As more big data
systems are deployed, the industry faces the challenge to develop rep-
resentative benchmarks that can evaluate the capabilities of competing
implementations. In this position paper, we argue for building future big
data benchmarks using what we call a “functional workload model”. This
concept draws on combined experiences from standard benchmarks, ex-
emplified by TPC-C. The functional workload model describes the func-
tional goals that the system must achieve, the data access patterns, the
load variations over time, and the computation required to achieve the
functional goals. Abstracting functional workload models from empiri-
cal studies of MapReduce deployments represents the first step towards
building truly representative big data benchmarks.

1 Introduction

Big data systems represent one of the fastest growing segments of the computer
industry today. They allow organizations to store, manipulate, and analyze large
and rapidly growing volumes of data from diverse and unconventional sources.
The exploding trade press on big data suggests that it has spread beyond early
adopters to traditional industry sectors. As new products appear and vendors
issue competing claims, the need emerges for an objective method to compare
the applicability, efficiency, and cost of big data solutions. In other words, there
is a growing need for a set of standard big data performance benchmarks.

There have been a number of attempts at constructing big data bench-
marks [18, 20, 21, 23, 30]. None of them has yet gained wide recognition and
usage. The field of big data performance is in a state where results from one
publication to the next are not comparable and often not even closely related.
This was also the case for online transaction processing (OLTP) some twenty
years ago and for decision support shortly thereafter.

In this position paper, we propose and argue for the use of a formal process to
develop standard big data benchmarks. This process draws on experiences from

successful industry standard benchmarks. We start by summarizing the prop-
erties of a good benchmark and we select TPC-C, the standard yardstick for
OLTP performance, to illustrate our proposed benchmark development process
(Section 2). To that end, we present an insider’s retrospective on the devel-
opment of TPC-C and discuss the process that led to the creation of a fully
synthetic, yet representative benchmark (Section 3). Analyzing this process al-
lows us to formalize three key concepts of the paper — application domains, the
functional workload model and functions of abstraction; and to discuss how they
enable the construction of representative benchmarks that can translate across
different types of big data systems (Section 4). We then highlight that the pro-
cess of identifying MapReduce functional workload models and their functions
of abstraction remains bottlenecked on empirical data and outline some of the
challenges specific to big data benchmarks (Section 5). Finally, we present a
vision for the development of big data benchmarks that would span multiple
application domains, each rooted in documented empirical data (Section 6).

2 To Define a Big Data Benchmark

Performance measurement for computer systems is not a new topic, and bench-
mark properties are well studied. To explore the path that would lead to the
definition of a successful big data benchmark, we begin by reviewing pertinent
properties of a good benchmark.

2.1 Properties of a good benchmark

The criteria for a good performance benchmark has been the topic of multiple
publications [22, 25, 27]. Prior work on the topic has identified the following
essential properties:

— Representative: The benchmark should measure performance under real life
environments and use metrics that are relevant to real life applications.

— Relevant: The benchmark should focus on measuring technologies that are
relevant and prominent in the market and align themselves with an area
where demand for performance information is high.

— Portable: The benchmark should be fair and portable to competing solutions
that target the needs of the same applications.

— Scalable: The benchmark should be able to measure performance of systems
within a wide range of scale. As technology progresses system scales and
their performance capabilities tend to increase. The benchmark should be
able to accommodate for that increase.

— Verifiable: The benchmark should prescribe repeatable measurements that
produce the same results and can be independently verified.

— Simple: The conceptual elements of the benchmark should be reduced to
a minimum and made easily understandable. The benchmark should also
abstract away details that represent case-by-case configurations or system
administration choices and do not affect performance.

While the above speaks of the properties that a good benchmark should display,
it does not address the methodology through which such a benchmark can be
constructed. In the following sections we propose such a methodology, illustrate
it using a successful standard benchmark, and review how it can be applied to
the construction of a big data benchmark.

2.2 Examples of successful benchmark

The field of performance benchmarks is indeed crowded. But few benchmarks
have reached the level of active industry standards. When it comes to bench-
marks measuring complete or end-to-end systems, two organizations have dom-
inated the market over the last two decades: SPEC and TPC.

Each organization has published a number of benchmarks with various degree
of success. One criteria for success is the level at which the benchmark is being
used by various organizations. While internal use is difficult to quantify, external
publication of benchmark results is easy to tally and represents a clear success
criteria. Looking at the most published benchmarks from TPC and SPEC reveals
the following:

lBenchmark ‘Publications
SPECjbb (2000 - 2005) 1,050
TPC-C 760
SPEC SFS 730
SPECweb (96 - 2009) 700
TPC-D/H 650

Table 1. Benchmark Result Publications

Of the above benchmarks, TPC-C and TPC-D/H were defined using a similar
process or abstraction. They can provide useful insight into the creation of a big
data benchmark. To further explore and illustrate these concepts we will be
examining the story of TPC-C with the goal to formalize the process at the core
of its definition.

3 The Process of Building TPC-C

TPC-C is a good example of a benchmark that has had a substantial impact
on technologies and systems. Understanding the origin of this long standing
industry yardstick provides important clues toward the definition of a big data
benchmark. In this section, we retrace the events that lead to the creation of
TPC-C and present the conceptual motivation behind its design.

3.1 The origins of TPC-C

The emergence and rapid growth of On Line Transaction Processing (OLTP) in
the early eighties highlights the importance of benchmarking a specific applica-
tion domain. The field of transaction processing was heating up and the need to
satisfy on-line transaction requirements for fast user response times was grow-
ing rapidly. CODASYL databases supporting transactional properties were the
dominant technology, a status increasingly challenged by relational databases.
For instance, version 3 of the Oracle relational database, released in 1983, im-
plemented support for the COMMIT and ROLLBACK functionalities. As com-
petition intensified, the need emerged for an objective measure of performance.
In 1985, Jim Gray led an industry-academia group of over twenty members to
create a new OLTP benchmark under the name DebitCredit [13].

In the late eighties, relational databases had matured and were fast replacing
the CODASYL model. The DebitCredit benchmark, and its derivatives ET1 and
TP1, had become de-facto standards. Database system vendors used them to
make performance claims, often raising controversies [33]. A single standard was
still absent, which led to confusion about the comparability of results. In June
of 1988, T. Sawyer and O. Serlin proposed to standardize DebitCredit. Later
that year, O. Serlin spearheaded the creation of the Transaction Processing
Performance Council (TPC) tasked with creating an industry standard version
of DebitCredit [34].

Around this time, Digital Equipment Corporation (DEC) was in the process
of developing a new relational database product, code name RdbStar. The devel-
opment team soon recognized that a performance benchmark would be needed
to assess the capabilities of early versions of the new product. DEC’s European
subsidiary had been conducting a vast empirical survey of database applications
across France, England, Italy, Germany, Holland, Denmark and Finland. Pro-
duction systems at key customer sites had been examined and local support
staff interviewed. The survey sought to better understand how databases were
used in the field and which features were most commonly found in production
systems. Armed with this data, the RdbStar benchmark development project
started with an examination of the many database benchmarks known at the
time, including the Wisconsin benchmark [15], AS3AP [35] and the Set Query
Benchmark [29].

The approach found to be the most representative of the European survey’s
findings came from an unpublished benchmark, one developed by the Microelec-
tronics and Computer Consortium (MCC), one of the largest computer industry
research and development consortia, based in Austin, TX. Researchers at MCC
were working on distributed database technology [14] and had developed a sim-
ulator to test various designs. Part of the simulator involved executing OLTP
functions inspired by an order processing application. The MCC benchmark was
selected by DEC as the starting point for the RdbStar benchmark. Parts of
the MCC benchmark were adjusted to be better aligned with the findings of
the empirical survey and the resulting benchmark became known internally as
Order-Entry.

In November of 1989, the TPC published its standardized end-to-end version
of DebitCredit under the name TPC Benchmark A (TPC-A) [11]. TPC Bench-
mark B (TPC-B) [12] followed in August 1990, which represented a back-end
version of TPC-A. By then, the simple transaction in DebitCredit was starting
to come under fire as being too simplistic and not sufficiently exercising the
features of mature database products. The TPC issued a request for proposal
of a more complex OLTP benchmark. IBM submitted its RAMP-C benchmark
and DEC submitted Order-Entry. The TPC selected the DEC benchmark and
assigned its author, F. Raab, to lead the creation of the new standard. July 1992
saw the approval and release of the new TPC Benchmark C (TPC-C) [31].

3.2 The TPC-C application domain

One of the main purposes of a benchmark is to evaluate and contrast the merits
of various implementations of the same set of requirements. These requirements
are driven from the common elements found in the many use cases [28] that pop-
ulate broad computational categories such as OLTP, decision support, OLAP,
analytics, stream processing or big data. We use the term “application domain”
to refer to these computational categories. Specifically, an application domain en-
capsulates many per-customer use cases. While each use case will likely include
some rare and customer-specific computational needs, the application domain
focuses on the common computational elements among many similar use cases.

The original Order-Entry benchmark from DEC included two distinct com-
ponents: a set of database transactions targeting the OLTP application domain,
and a set of simple and complex queries targeting the decision support appli-
cation domain. The TPC adopted the transactional portion of Order-Entry for
the creation of its new OLTP benchmark: TPC-C.

An important aspect of the design of the transactional portion of Order-
Entry is that it did not follow the model traditionally used for implementing use
cases and building business applications. To illustrate this aspect we contrast
the two design models.

The design of a business application can be decomposed into four basic ele-
ments, as follows:

— Tables: The database tables, the layout of the rows and the correlation be-
tween tables.

Population: The data that populates the tables, the distribution of values
and the correlation between the values in different columns of the tables.
— Transactions: The units of computation against the data in the tables, the
distribution of input variables and the interactions between transactions.

— Scheduling: The pacing and mix of transactions.

In the traditional design model, each of these elements implements part of
the business functions targeted by the application. The tables would represent
the business context. The population would start with a base set capturing the
initial state of the business and evolve as a result of conducting daily business.

The transactions would implement the business functions. The scheduling would
reflect business activity. This traditional model results in an application that is
well aligned with the business details of the targeted use case. As such, it is
too specific to be representative of the broader and more generic aspects that
characterize a whole application domain.

In contrast, benchmarking is a synthetic activity that seeks to be repre-
sentative of a whole application domain. Its sole purpose is to gather relevant
performance information as it pertains to any application within the targeted
domain. Being free of any real business context, the elements of such a bench-
mark can be abstracted from a representative cross section of the application
domain’s use cases.

To illustrate the concept of using abstractions to design the elements of a
benchmark, we take a closer look at how this applies to transactions. The objec-
tive is to look at the compute units of multiple applications and to find repeti-
tions or similarities. For instance, in the OLTP application domain, it is common
to find user-initiated operations that involve multiple successive database trans-
actions. While these transactions are related through the application’s business
semantics, they are otherwise independent from the point of view of exercising
the system or measuring its performance. Consequently, they should be exam-
ined independently during the process of creating a set of abstract database
transactions. Consider the following:

User-initiated operation

Database Transaction T1
Read row from table A
Update row in table B
Commit transaction

Database Transaction T2
Update row in table A
Insert row in table C
Commit transaction

Database Transaction T3
Read row from table C
Update row in table B
Commit transaction

In the above, T1 and T3 are performing similar operations, but on different
tables. However, if tables A and C have sufficiently similar characteristics, T1
and T3 can be viewed as duplicates of the same abstract transaction, one that
contains a “read row” followed by an “update row”.

During the design of the Order-Entry benchmark, five abstract transactions
were selected to encapsulate the activity most commonly found in real-life OLTP
application. Such a simplification resulted in a substantial loss of specificity.
However, we argue that the loss is more than outweighed by the gain in the
ability to gather performance information that are relevant and applicable across
a large portion of the OLTP application domain. The success of the benchmark
over the last two decades appears to support this view.

4 Functions of Abstraction and Functional Workload
Model

The process of constructing TPC-C illustrates two key concepts — functions
of abstraction and the functional workload model. In this section, we explain
what they are, and how they form a methodology for constructing benchmarks
that target specific application domains while accommodating diverse system
implementations.

4.1 Functions of abstraction

The implementations of use cases within a particular application domain are
made of computational functions, such as transactions, queries, or MapReduce
jobs. As stated above, the design of a benchmark is only concerned with ab-
stracting a cross-section of the most commonly found computational functions.
We introduce the concept of functions of abstraction as a way of describing
these abstracted computational functions. The intent is to capture a functional
description of “what is being computed” at an abstract level; rather than a more
concrete behavioral description of “how the computation is done”.
The properties of a function of abstraction are as follows:

— Generic: The functional goal of the computation is described in a generic
form, independent of the underlying system implementation, its software
stack and the hardware behavior that results.

— Atomic: A group of transactions, queries, or jobs that must be executed
together to serve a meaningful purpose (from a performance standpoint)
should be considered as a single function of abstraction and not subdivided.

— Unique: Two different sets of transactions, queries, or jobs that serve the
same functional goal are two realizations of the same function of abstraction.

— Data independent: The same function of abstraction can execute against
data with different statistical properties and of different scales. Specifically,
the description of the dataset acted upon is separate from the description of
the function acting on the data.

— Interdependent: Their description includes the rules governing the interac-
tions they have with each other.

— Composable: Any subset can be combined to create workloads of various
levels of complexity.

TPC-C (i.e., Order-Entry) helps illustrate the concept. The benchmark is
articulated around five functions of abstraction: a mid-weight read-write trans-
action (i.e., New-Order), a light-weight read-write transaction (i.e., Payment),
a mid-weight read-only transaction (i.e., Order-Status), a batch of mid-weight
read-write transactions (i.e., Delivery), and a heavy-weight read-only transaction
(i.e., Stock-Level) [32]. They are specified in the semantic context, or story-line,
of an order processing environment. That context, however, is entirely artificial.
Its sole purpose is to allow easy description of the components.

Translating back to the earlier list, properties of functions of abstraction
apply to TPC-C as follows:

Generic: The functional goal is defined in terms of a set of data manipu-
lation operations. The underlying system could be a relational database, a
traditional file system, a CODASYL database, or an extension of the Apache
Hadoop implementation of MapReduce that provides transactional capabil-
ities.

— Atomic: Each transaction involves multiple data manipulation operations
that operate as a whole.

— Unique: The five transactions serve five different functional goals.

— Data independent: The targeted data is defined separately through the dis-
tribution of values used as input variables. The data volume and schema is
likewise specified separately.

— Interdependent: Their interactions is governed by the transactional proper-
ties of atomicity, consistency, isolation, and durability (i.e., the ACID prop-
erties).

— Composable: Workloads of various complexities can be created by using var-
ious combinations and mixes of the defined transactions. The TPC-C work-
load involves the combination of all five transactions, while the Payment
transaction run by itself would become the TPC-A (i.e., Debit-Credit) work-
load.

Once defined, the functions of abstraction can be combined with a specified
scheduling and with the definition of table structures and populations to form a
functional workload model, which we explain next.

4.2 Functional Workload Model

The functional workload model captures in an implementation-independent (i.e.,
functional) manner the load that the system needs to service. This load is de-
signed to be representative of the demands put on the system by an average
use case within the application domain. The functional workload model includes
three components - the functions of abstraction, their load pattern, and the data
set they act upon.

The load pattern applied to the system is specified in terms of the execution
frequency, distribution and arrival rate of each individual function of abstraction.
In defining the load pattern, functions of abstraction can be combined to form
coordinated groups with interdependencies.

The data set acted upon is specified in terms of its structure, inter-dependence
between data elements, initial size and contents, and how it evolves over the
course of the workload’s execution.

The definition of these three components is limited to the essential functional
goals of the particular application domain. The simplicity and lack of duplica-
tion that governs the definition of functions of abstraction must also be applied

when specifying the load pattern and the data set that completes the functional
workload model.

Again, TPC-C helps illustrate the concepts involved in the functional work-
load model:

There are functions of abstractions in the form of five transactions.
— The load pattern involves a randomized arrival of transactions controlled by
a weighted selection criteria and a random inter-arrival delay [32].

There is an inter-dependence between the transactions. In particular, every
New-Order will be accompanied by a Payment, and every group of ten New-
Order transactions will produce one Delivery, one Order-Status, and one
Stock-Level transaction [32].

— There are specified structures, inter-dependencies, contents, initial sizes,
and growth rates for the data set, materialized in nine tables (i.e., Ware-
house, District, Customer, History, Order, New-Order, Order-Line, Stock,
and Item [31]).

In contrast, a major shortcoming of some of the recent big data micro bench-
mark proposals [6,9,26,30] is the lack of any clear workload model, let alone
a functional workload model as defined here. The resulting benchmarks mea-
sure system performance using one stand-alone compute unit at a time. They
are lacking the functional view that is essential to benchmarking the diverse
and rapidly changing big data solutions aimed at servicing emerging application
domains, as we explain next.

4.3 Functional benchmarks essential for big data

We advocate the functional view for big data benchmarks, as illustrated by the
Functional Workload Model layer in Figure 1.

The functional view enables a large range of similarly targeted systems to be
compared, because such an abstraction level has been intentionally constructed
to be independent of system implementation choices. In particular, the functional
description of TPC-C does not preclude an OLTP system from being built on
top of, say, the Hadoop distributed file system, and its performance compared
against a relational database system.

The functional view also allows the benchmark to scale and evolve. This abil-
ity comes from the fact that functions of abstraction are specifically constructed
to be independent of each other, and of the characteristics of the data sets they
act upon. Thus, functions of abstraction can remain relatively fixed as the size
of the data set is scaled. Further, as each application domain evolves, functions
of abstraction can be added, deprecated, involved in a different load pattern
or performed on a data sets with different characteristics. Thus, functions of
abstraction form an essential part of a scalable and evolving benchmark model.

Figure 1 also shows the Systems View and Physical View. In Section 5.4, we
will explain the pros and cons of these alternate approaches using some examples
of early MapReduce benchmarks. We will also discuss these approaches in the
context of a general purpose big data benchmark.

Application Domain
| Use-Case X || Use-Case Y || Use-Case Z |

Functional Workload Model

| Functions of Abstraction |

| Data Set || Load Pattern |

Systems View

| Web Server | | TP Monitor || App Server |
| MapReduce | | Relational/SQL | | NoSQL DB |
Physical View

| SMP Server || Blades || Cluster || Cloud |

[cru |[Nework |[wemon][g |

Fig. 1. The conceptual relations between application domains, functional workload
models, functions of abstraction, and the system and physical views.

5 Extending these Concepts to MapReduce

For the functions of abstractions concept to be useful, it must be applicable
to different types of big data systems. Two important examples are relational
databases and MapReduce. Identifying functions of abstraction for big data is
currently bottlenecked on limited empirical knowledge. However, emerging em-
pirical data hints toward the identification of some application domains, each
with its own functional workload model. This section discusses some benchmark
lessons drawn from MapReduce and generally applicable to big data.

5.1 Towards functions of abstraction for big data

MapReduce and big data represent relatively new and rapidly expanding com-
puting paradigms. The latest empirical insights [16] indicate that the effort to
extract Hadoop MapReduce functions of abstraction remains a work in progress.
The data in that study, while unprecedented for MapReduce, is limited to seven
workloads. This is far from the breadth of the OLTP survey that preceded TPC-
C. A key result from [16] is the diversity of observed behavior. This result in-
dicates that we should survey more system deployments to understand both
common and outlier behavior. Even if functions of abstraction are extracted
from the current, limited survey, there is no guarantee that these functions of
abstraction would be representative of a majority of big data deployments.

A key shortcoming in the data from [16] is the lack of direct information re-
garding functional computation goals. This is due to the fact that current logging

tools in the Apache Hadoop implementation of MapReduce collect only system-
level information. Specifically, the analysis in [16] identified common MapRe-
duce jobs using abstractions that are inherently tied to the map and reduce
computational paradigm (i.e., input, shuffle, output data sizes, job durations,
map and reduce task times). While such a systems-view has already led to some
MapReduce-specific performance tools [10], this view becomes insufficient for
extracting functions of abstractions related to big data application domains.

A good starting point to identify functions of abstraction would be to capture
the data query or workflow text at MapReduce extensions such as Hive [2],
Pig [4], HBase [1], Oozie [3], or Sqoop [5]. The hope is that the analysis of a
large collection of such query or workflow texts would mirror the empirical survey
that led to the TPC-C functions of abstraction. A complementary effort woud
involve collecting the experiences of bid data scientists and big data systems
administrators. A collection of such first-hand experiences should offer insights
on what are the common big data business goals and the ensuing computational
needs. The emergence of enterprise MapReduce vendors with a broad customer
base helps expedite such efforts.

5.2 Emerging big data application domains

The data in [16] allows us to speculate on the emerging big data application
domains that are addressed by the MapReduce deployments surveyed, notwith-
standing the limits outlined in Section 5.1. In the following, we describe the
characteristics of these application domains.

A leading application domain is flexible latency analytics, for which MapRe-
duce was originally designed [19]. Flexible latency analytics is indicated by the
presence of some jobs with input and output data sets that are orders of magni-
tude larger than for other jobs, up to the “full” data set. This application domain
has previously been called “batch analytics”. However, as with other application
domains such as decision support, the batch nature is due to the limited capa-
bilities of early systems. Low latency is desirable but not yet essential; hence
“flexible latency”. The data in [16] indicates that different deployments perform
vastly different kinds of analytics, suggesting that the application domain likely
involves functions of abstraction with a wide range of characteristics.

Another application domain is interactive analytics. Evidence suggesting in-
teractive analytics include diurnal workload patterns, identified by visual in-
spection, and the presence across all workloads of frameworks such as Hive and
Pig, one of whose design goals was ease of use by human analysts familiar with
SQL. The presence of this application domain is confirmed by data scientists
and systems administrators [8]. Low computational latency would be a major
requirement. It is likely that this application domain is broader than online an-
alytical processing (OLAP), since the analytics typically involve unstructured
data, and some analyses are specifically performed to explore and identify pos-
sible data schema. The functional workload model is likely to contain a dynamic
mix of functions of abstraction, with a large amount of noise and burstiness
overlaid on a daily diurnal pattern.

Yet another application domain is semi-streaming analytics. Streaming an-
alytics describes continuous computation processes, which often update time-
aggregation metrics. For MapReduce, a common substitute for truly streaming
analytics is to setup automated jobs that regularly operate on recent data, e.g.,
compute click-rate statistics for a social network with a job every five minutes.
Since “recent” data is intentionally smaller than “historical” data, we expect
functions of abstraction for this application domain to run on relatively small
and uniformly sized subset of data. The functional workload model is likely to
involve a steady mix of these functions of abstraction.

According to the seven deployments surveyed in [16], all three application
domains appear in all big data deployments. While interactive analytics carries
the most weight in terms of the number of jobs, they are all good candidates
for a targeted big data benchmark, provided that they are confirmed by either
trace analysis or user surveys of additional big data deployments.

5.3 Challenges highlighted by MapReduce survey

The MapReduce survey in [16] also served to highlight properties of big data sys-
tems that represent new challenges in the development of big data benchmarks.
They can be summarized as follows:

— System diversity: Big data systems tend to host multiple use cases from
divergent application domains. Such diversity translates to significant, and
sometimes mutually exclusive, variations in the design of big data systems.
A good benchmark for big data needs to replicate realistic conditions across
a range of application domains, and use metrics that translates across po-
tentially divergent computational needs. Thus, it may be challenging for a
big data benchmark to be representative and portable.

— Rapid data evolution: Big data systems use cases constantly and rapidly
evolve. This reflects the innovations in business, science, and consumer be-
havior facilitated by knowledge extracted from big data. This change is often
rooted in the underlying data set and likely outpaces the ability to develop a
representative data set as part of the functional workload model. The chal-
lenge is to ensure that the benchmark keeps sufficient pace with such changes
to remain relevant.

— System and data scale: Big data systems often involve multiple, distributed
components, while big data itself often involves multiple sources of different
formats. This translates to multiple ways for the system and the data to
scale. Consequently, it is challenging for a big data benchmark to be truely
scalable and adequately capture the multi-dimentional scaling paradigm of
big data systems.

— System complexity: The distributed nature of big data systems also make
it challenging for a big data benchmark to be simple. Any simplifications
of big data systems is likely to remain fairly complex in the absolute sense.
The process of simplifications will need to be supported by objective and

empirical measurements to verify that all significant performance factors are
captured by the benchmark.

5.4 Surveying MapReduce-specific benchmarks

The success of MapReduce greatly helped raise the profile of big data. The
application domains currently dominated by MapReduce should be an important
part of big data benchmarks. Some MapReduce benchmarks also help highlight
limited approaches for building a general purpose big data benchmark.

The list below discusses these approaches, along with the corresponding
MapReduce-specific benchmarks, and why they make it hard to achieve the
desirable benchmark properties summarized in Section 2.

— Not having a true functional workload model. Bechmarks in this category
focus on measuring stand-alone MapReduce jobs [6,9,26,30]. They are in-
herently limited to measuring a narrow sliver of the full range of cluster
behavior, as a real life cluster hardly ever runs one job at a time or just
a handful of specific jobs. This prevents the benchmark from achieving the
“representative” property.

— Adopting a physical view of benchmarking. This category includes the Grid-
mix3 [7] Bechmark. It seeks to reproduce the exact breakdown of jobs into
tasks, the exact placement of tasks on machines, and the exact scheduling
of task execution. This is similar to other physical view benchmarks that
reproduce CPU, memory, disk, and network activities. While useful for com-
paring hardware components, one cannot use physical view benchmarks to
compare, for example, two MapReduce systems that have different schedul-
ing algorithms or operate on data of different compression formats. Further,
the attempt to reproduce a large amount of execution details introduces scal-
ability issues for the benchmark execution tool [8,24]. “Portable”, “scalable”,
and “verifiable” properties would be hard to achieve.

— Adopting a systems view of benchmarking. This view is adopted by the
SWIM [10] benchmark. This approach captures system behavior at the nat-
ural, highest level semantic boundaries in the underlying system. For MapRe-
duce, this translates to MapReduce-specific, per job characteristics such as
the input and output data to the map() and reduce() functions. The systems
view does allow many desirable benchmark properties to be achieved, and
SWIM is already used by leading big data platform vendors. However, the
systems view for MapReduce is not “portable” to other big data solutions.
For example, the map() and reduce() abstractions do not directly translate
to traditional RDBMS systems. Hence, the systems view is also insufficient
for a general big data benchmark.

The functional view advocated in this paper specifically seeks to go beyond
these limits. It aims to enable comparison between diverse styles of systems that
service the same functional goals, but have different system architectures and
exhibit different physical behaviors.

6 Vision for Big Data Benchmark

The concepts of functions of abstraction, functional workload model, and appli-
cation domains help us develop a vision for a possible big data benchmark.

Big data encompasses many application domains. OLTP is one domain. If
confirmed by further survey, other possible domains are OLAP, flexible latency
analytics, interactive analytics, and semi-streaming analytics. There may be
other application domains yet to be identified. The criteria for identifying an
application domain should be that a trace-based or user-based survey indicates
that the application domain is important to the big data needs of a large range
of enterprises, and that sufficient empirical traces are available to allow functions
of abstraction and functional workload models to be extracted.

Within each application domain, there are multiple functions of abstraction,
extracted from empirical traces and defined in the fashion outlined in Section 4.1.
The benchmark should include the functions of abstraction representing the com-
mon traces from across all system deployments within the application domain.
What is “common” needs to be supported by empirical traces.

There is also a representative functional workload model, extracted from
empirical traces and defined in the fashion outlined in Section 4.2. Each specific
system deployment or application will likely include a different organization of
data sets and workload arrival patterns. The benchmark should include a single
representative functional workload model for each application domain, i.e., a
functional workload model that is not specific to any one application, greatly
simplified, and yet typical of the entire application domain. The details of this
representative functional workload model need to be supported by empirical
traces.

The traces and survey used to support the selection of functions of abstraction
and functional workload models should be made public. Doing so allows the
benchmark to establish scientific credibility, defend against charges that it is
not representative of real life conditions, and align with the business needs of
enterprises seeking to derive value from big data.

Good first steps toward realizing the ideas in this paper include the Big-
Bench benchmark [23], which includes English descriptions of what could be
expanded into functions of abstractions for some Teradata use cases, and the
CH-benchmark [17], which aims to combine the OLTP and OLAP application
domains.

7 Summary and Future Work

In this paper we summarized the properties of a good benchmark and highlighted
the need for a formal process to build a benchmark displaying these properties.
We studied the creation of TPC-C as an example of such a process and formalized
it by introducing several essential concepts — application domains, functions
of abstraction, and the functional workload model. We studied the results of
published surveys of big data systems as a first step toward defining application

domains and functions of abstractions specific to big data, with the ultimate goal
of creating a set of widely accepted and frequently used big data benchmarks.

The next step in the process of building the first standard big data bench-
mark would be to survey additional system deployments to identify the most
prominent big data application domain and within this application domain to
identify the representative functional workload model and its functions of ab-
straction. In the future, we should also consider combining multiple big data
benchmarks to represent systems that increasingly host use cases from multiple
application domains.

References

Apache HBase. http://hbase.apache.org/.

Apache Hive. http://hive.apache.org/.

Apache Oozie. http://incubator.apache.org/oozie/.

Apache Pig. http://pig.apache.org/.

Apache Sqoop. http://sqoop.apache.org/.

Gridmix. HADOOP-HOME/mapred/src/benchmarks/gridmix in Hadoop 0.21.0 on-

wards.

Gridmix3. HADOOP-HOME/mapred/src/contrib/gridmixinHadoop0.21.0onwards.

Personal conversation with data scientists and cluster operators at Facebook.

Sort benchmark home page. http://sortbenchmark.org/.

SWIM - Statistical Workload Injector for MapReduce. http://github.com/

SWIMProjectUCB/SWIM/wiki.

11. TPC Benchmark A Standard Specification Revision 2.0. http://www.tpc.org/
tpca/spec/tpca_current.pdf, 1994.

12. TPC Benchmark B Standard Specification Revision 2.0. http://www.tpc.org/
tpca/spec/tpcb_current.pdf, 1994.

13. Anon et al. A measure of transaction porcessing power. Datamation, 1985.

14. L. Belady and C. Richter. The MCC Software Technology Program. SIGSOFT,
10, 1985.

15. D. Bitton, D. DeWitt, and C. Turbyfill. Benchmarking database systems: A sys-
tematic approach. In VLDB 1983.

16. Y. Chen, S. Alspaugh, and R. Katz. Interactive Analytical Processing in Big Data
Systems: A Cross-Industry Study of MapReduce Workloads. In VLDB 2012.

17. R. Cole et al. The mixed workload ch-benchmark. In DBTest 2011.

18. B. Cooper et al. Benchmarking cloud serving systems with ycsb. In SOCC 2010.

19. J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clus-
ters. In OSDI 2004.

20. Z. Fadika et al. Benchmarking mapreduce implementations for application usage
scenarios. In GRID 2011.

21. M. Ferdman et al. Clearing the clouds, a study of emerging scale-out workloads
on modern hardware. In ASPLOS 2012.

22. D. Ferrari. Computer systems performance evaluation. Prentice-Hall, 1978.

23. A. Ghazal et al. Bigbench: towards an industry standard benchmark for big data
analytics. In SIGMOD 2013.

24. B. D. Gowda. HiBench: A Representative and Comprehensive Hadoop Benchmark

Suite. In Presentations of WBDB 2012.

S ot L=

S v »

25

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

J. Gray. The Benchmark Handbook For Database and Transaction Processing
Systems - Introduction. In J. Gray, editor, The Benchmark Handbook For Database
and Transaction Processing Systems. Morgan Kaufmann Publishers, 1993.

S. Huang et al. The HiBench benchmark suite: Characterization of the MapReduce-
based data analysis. In ICDEW 2010.

K. Huppler. The art of building a good benchmark. In TPC Technical Conference
20009.

I. Jacobson et al. Object-Oriented Software Engineering - A Use Case Driven
Approach. Addison-Wesley, 1992.

P. O’Neil. A set query benchmark for large databases. In Conference of the
Computer Measurement Group 1989.

A. Pavlo et al. A comparison of approaches to large-scale data analysis. In SIG-
MOD 2009.

F. Raab. TPC-C - The Standard Benchmark for Online Transaction Processing
(OLTP). In J. Gray, editor, The Benchmark Handbook For Database and Trans-
action Processing Systems. Morgan Kaufmann Publishers, 1993.

F. Raab, W. Kohler, and A. Shah. Overview of the TPC Benchmark C: The
Order-Entry Benchmark. www.tpc.org/tpcc/detail.asp.

O. Serlin. IBM, DEC disagree on DebitCredit results. F'T" Systems News, 63, 1988.
O. Serlin. The History of DebitCredit and the TPC. In J. Gray, editor, The
Benchmark Handbook For Database and Transaction Processing Systems. Morgan
Kaufmann Publishers, 1993.

C. Turbyfill, C. Orji, and D. Bitton. As3ap: A comparative relational database
benchmark. In COMPCON 1989.

