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Abstract.  SciDB is an open-source analytical database oriented toward the data 

management needs of scientists. As such it mixes statistical and linear algebra 

operations with data management ones, using a natural nested multi-dimensional 

array data model. We have been working on the code for two years, most recently 

with the help of venture capital backing. Release 11.06 (June 2011) is downloadable 

from our website (SciDB.org). 

 

This paper presents the main design decisions of SciDB. It focuses on our decisions 

concerning a high-level, SQL-like query language, the issues facing our query 

optimizer and executor and efficient storage management for arrays. The paper also 

discusses implementation of features not usually present in DBMSs, including version 

control, uncertainty and provenance.  

Keywords: scientific data management, multi-dimensional array, statistics, linear 

algebra 

1 Introduction and Background 

The Large Synoptic Survey Telescope (LSST) [1] is the next “big science” astronomy 

project, a telescope being erected in Chile, which will ultimately collect and manage 

some 100 Petabytes of raw and derived data. In October 2007, the members of the 

LSST data management team realized the scope of their data management problem, 

and that they were uncertain how to move forward. As a result, they organized the 

first Extremely Large Data Base (XLDB-1) conference at the Stanford National 

Accelerator Laboratory [2]. Present were many scientists from a variety of natural 

science disciplines as well as representatives from large web properties. All reported 

the following requirements: 

 

Multi-petabyte amounts of data. In fact a recent scientist at a major university 

reported that 20 research groups at his university had more than a quarter of a 

petabyte each [3]. 

  

A preponderance of array data. Geospatial and temporal data such as satellite 

imagery, oceanographic data telescope data, telematics data and most simulation data 
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all are naturally modeled as arrays.  Genomics data generated from high throughput 

sequencing machines are also naturally represented as arrays.   

 

Complex analytics. Traditional business intelligence has focused on simple SQL 

aggregates or windowing functions. In contrast, scientists need much more 

sophisticated capabilities.  For example, satellite imagery can be reported at various 

resolutions and in different co-ordinate systems. As a result, earth scientists need to 

regrid such imagery in order to correlate the data from multiple satellites. In addition, 

most satellites cannot see through cloud cover. Hence, it is necessary to find the 

“best” cloud-free composite image from multiple passes of the satellite. These are 

representative of the complex operations required in this application area. 

 

A requirement for open source code. Every scientist we have talked to is adamant 

about this requirement.  Seemingly, the experience of the Large Hadron Collider 

(LHC) project [4] with one proprietary DBMS vendor has “poisoned the well”. 

Hence, scientists require the option of fixing bugs and adding their own features, if 

the vendor of their chosen solution is unable, unwilling, or just slow to respond. In 

effect, only open source software is acceptable. 

 

A requirement for no overwrite. Scientists are equally adamant about never 

throwing anything away. For example, large portions of the earth are currently not 

very interesting to earth scientists. However, that could change in the future, so 

discarding currently uninteresting data is not an option. Also, they wish to keep 

erroneous data that has been subsequently corrected. The reason for this is to redo 

analyses on the data as it existed at the time the original analysis was done, i.e. they 

want auditability for their analyses. This is related to the provenance discussion 

below, and requires that all data be kept indefinitely. 

 

A requirement for provenance. If a data element looks suspicious, then scientists 

want to be able to trace backward through its derivation to find previous data that 

appears faulty. In other words, trace the error back to its source. Similarly, they would 

then want to find all of the derived data that came from this faulty item. In other 

words, they want the ability to do forward and backward derivation efficiently.  

 

One reason for this requirement is assistance in the error correction noted above. A 

second reason is to facilitate sharing. Different scientists generally cannot make use of 

derived data unless they know the algorithm that was used to create it. For example, 

consider the “best” cloud free image discussed above. There is no universal way to 

choose the best composite image, and any scientist who wants to use a composite 

image must know what algorithm was used to construct it. They want to find this 

information by exploring the provenance of the data of interest.  

 

A requirement for uncertainty. After all, every bit of scientific data comes with 

error bars. Current DBMSs were written to support the business market, and assume 

the data is perfect. Obviously, enterprises must know accurate salaries, in order to 
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write pay checks. Essentially all information collected from sensors (nearly 100% of 

science data) does not have this property.  Furthermore, scientists may want to 

propagate error data through a sequence of calculations. 

 

A requirement for version control. There is no universal agreement on the cooking 

algorithms, which turn raw data into derived data sets. Hence, scientists would like to 

re-cook raw data for their study areas, retaining the conventional derivations for the 

rest of the data set. Although they can construct a complete copy of the data, with the 

required characteristics, it is wildly more efficient to delta their copies off of the 

conventional one, so the common data only appears once. Version control software 

has been supporting this functionality for years. 

 

At XLDB-1, there was a general feeling that RDBMSs would never meet the above 

requirements because they have: 

 

 The wrong data model, 

 The wrong operators, and 

 Are missing required capabilities. 

Moreover, the RDBMS vendors appear not to be focused on the science market, 

because the business enterprise market is perceived to be larger. Hence, there was 

skepticism that these shortcomings would ever be addressed. 

 

A second theme of the meeting was the increasing difficulty of meeting big science 

requirements with “from the bare metal up” custom implementations. The software 

stack is simply getting too large. Several of the web properties indicated the scope of 

their custom efforts, and said “we are glad we have sufficient resources to move 

forward”. Also, there was frustration that every big science project re-grows the 

complete stack, leading to limited shared infrastructure. The Sloan Digital Sky Survey 

[5] was also noted as a clear exception, as they made use of SQLServer. 

 

In effect, the community was envious of the RDBMS market where a common set of 

features is used by nearly everybody and supported by multiple vendors. In summary, 

the mood was “Why can’t somebody do for science what RDBMS did for business?” 

 

As a result, Dave Dewitt and Mike Stonebraker said they would try to build a from-

the-ground-up DBMS aimed at science requirements.  Following XLDB-1, there were 

meetings to discuss detailed requirements and a collection of use cases written, 

leading to an overall design. This process was helped along by the LSST data 

management team who said, “If it works, we will try to use it”.  

 

We began writing code in late 2008, with a pick-up team of volunteers and research 

personnel.  This led to a demo of an early version of SciDB at VLDB in Lyon, France 

in Sept 2009 [6]. We obtained venture capital support for the project, and additional 

assistance from NSF in 2010. This has allowed us to accelerate our efforts. We have 
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recently released SciDB 11.06 and are working toward a full featured high 

performance system in late 2011. We have been helped along the way by the 

subsequent annual XLDB meetings [7, 8, 9] where SciDB issues have been discussed 

in an open forum. 

 

This paper reports on the SciDB design and indicates the status of the current system. 

2 SciDB Design 

In this section we present the major design decisions and our rationale for making 

them the way we did. We start with system assumptions in Section 2.1, followed by a 

data model discussion in Section 2.2. The query language is treated in Section 2.3. 

The optimizer and storage management components are treated respectively in 

Section 2.4 and 2.5. Other features, such as extensibility, uncertainty, version control 

and provenance are discussed at appropriate times. 

2.1 System Assumptions 

It was pretty obvious that SciDB had to run on a grid (or cloud) of computers. A 

single node solution is clearly not going to make LSST happy. Also, there is universal 

acceptance of Linux in this community, so the OS choice is easy. Although we might 

have elected to code the system in Java, the feeling was that C++ was a better choice 

for high performance system software.  

 

The only point of contention among the team was whether to adopt a shared-disk or a 

shared-nothing architecture. On the one hand, essentially all of the recent parallel 

DBMSs have adopted a shared nothing model, where each node talks to locally 

attached storage. The query optimizer runs portions of the query on local data. In 

essence, one adopts a “send the query to the data” model, and strives for maximum 

parallelism. 

 

On the other hand, many of the recent supercomputers have used a shared-disk 

architecture. This appears to result from the premise that the science workload is 

computation intensive, and therefore the architecture should be CPU-focused rather 

than data focused. Also, scientists require a collection of common operations, such as 

matrix multiply, which are not “embarrassingly parallel”. Hence, they are not 

obviously faster on a shared-nothing architecture. 

 

Since an important goal of SciDB is petabyte scalability the decision was made that 

SciDB would be a shared nothing engine. 
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2.2 Data Model 

It was clear that we should select an array data model (rather than a table one) as 

arrays are the natural data object for much of the sciences. Furthermore, early 

performance benchmarks on LSST data [10] indicated that SciDB is about 2 orders of 

magnitude faster than an RDBMS on a typical science workload. Finally, most of the 

complex analytics that the science community uses are based on core linear algebra 

operations (e.g. matrix multiply, covariance, inverse, best-fit linear equation solution). 

These are all array operations, and a table model would require a conversion back and 

forth to arrays. As such, it makes sense to use arrays directly. 

 

Hence, SciDB allows any number of dimensions for an array. These can be 

traditional integer dimensions, with any starting and ending points or they can be 

unbounded in either direction. Moreover, many arrays are more natural with non-

integer dimensions. For example, areas of the sky are naturally expressed in polar co-

ordinates in some astronomy projects. Hence, dimensions can be any user-defined 

data type using a mechanism we presently describe. 

 

Each combination of dimension values defines a cell of an array, which can hold an 

arbitrary number of attributes of any user-defined data type. Arrays are uniform in 

that all cells in a given array have the same collection of values. The only real 

decision was whether to allow a nested array data model or a flat one. Many use 

cases, including LSST, require nested arrays, so the extra complexity was deemed 

well worth it. Also, nested arrays support a mechanism for hierarchical decomposition 

of cells, so that systematic refinement of specific areas of an array can be supported, a 

feature often cited as useful in HDF5 [11]. 

 

Hence, an example array specification in SciDB is: 

CREATE ARRAY example <M: int, N: float> [I=1:1000, J=1000:20000] 

Here, we see an array with attributes M and N along with dimensions I and J. 

2.3 Query Language 

SciDB supports both a functional and a SQL-like query language.  The functional 

language is called AFL for array functional language; the SQL-like language is called 

AQL for array query language.   AQL is compiled into AFL. 

 

AFL, the functional language includes a collection of operations, such as filter and 

join, which a user can cascade to obtain his desired result. For example, if A and B 

are arrays with dimensions I and J, and c is an attribute of A, then the following 

utterance would be legal: 

 
temp = filter (A, c = value) 

result = join (B, temp: I, J) 
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Or the composite expression: result = join (B, filter (A, c = value), I, J) 

 

Such a language is reminiscent of APL [12] and other functional languages and array 

languages [13, 14].  

 

For commercial customers more comfortable with SQL, SciDB has created an array 

query language, AQL, which looks as much like SQL as possible. Hence, the above 

example is expressed as: 

 
select * 

from A, B 

where A.I = B.I and A.J = B.J and A.c = value 

We have had considerable discussion concerning two aspects of the semantics of 

AQL, namely joins and non-integer dimensions, and we turn to these topics at this 

time. 

 

Consider the arrays A and B from above, and suppose A has attributes c and d, while 

B has attributes e and f. The above example illustrated a dimension join, i.e., one 

where the dimensions indexes must be equal. The result of this operation has 

dimensions I and J, and attributes c, d, e and f. In essence this is the array version of a 

relational natural join. It is also straightforward to define joins that match less than all 

dimensions.  

 

Non equi-dimensional joins are also reasonably straightforward. For example the 

following join result must be defined as a three dimensional array, I (from A), I (from 

B) and J. 
select * 

from A, B 

where A.I > B.I and A.J = B.J and A.c = value 

The problem arises when we attempt to define attribute joins, e.g., 
 

select * 

from A, B 

where A.c = B.e and A.d = B. f 

In effect, we want to join two arrays on attribute values rather than dimensions. This 

must be defined as a four dimensional result: I (from A), J (from A), I (from B), and J 

(from B). 

  

To understand array joins, it is useful to think of an array as having a relational 

representation, where the dimensions are columns as are the cell values. Then any 

array join can be defined as a relational join on the two argument tables. This 

naturally defines the semantics of an array join operation, and SciDB must produce 

this answer. In effect, we can appeal to relational semantics to define array joins. 
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A second semantic issue is an offshoot of the first one. It is straightforward to change 

attribute values in AQL with an update command. For example, the following 

command increments a value for a specific cell: 

 

update A set (d = d+1) 

where A.I = value and A.J = value 

 

Obviously, it must be possible to manipulate SciDB dimensions, and an update 

command is not the right vehicle. Hence, SciDB has included a new powerful 

command, transform, to change dimension values. The use cases for transform 

include: 

 Bulk changes to dimensions, e.g. push all dimension values up one to make a slot 

for new data, 

 Reshape an array; for example change it from 100 by 100 to 1000 by 10,  

 Flip dimensions for attributes, e.g. replace dimension I in array A with a dimension 

made up from d.  

 Transform one or more dimension, for example change I and J into polar co-

ordinates.  

Transform can also map multiple dimension or attribute values to the same new 

dimension value. In this case, transform allows an optional aggregation function to 

combine the multiple values into a single one for storage. In the interest of brevity we 

skip a detailed discussion of the transform command and the interested reader is 

referred to the online documentation on SciDB.org, for a description of this 

command.  

 

Non-integer dimensions are supported by an index that maps the dimension values 

into integers. Hence, an array with non-integer dimensions is stored as an integer 

array mapping index.  

2.4 Extensibility 

It is well understood that a DBMS should not export data to an external computation 

(i.e. move the data to the computation), but rather have the code execute inside the 

DBMS (move the computation to the data). The latter has been shown to be wildly 

faster, and is supported by most modern day relational DBMSs. The norm is to use 

the extension constructs pioneered by Postgres more than 20 years ago [15]. 

 

Since science users often have their own analysis algorithms (for example examining 

a collection of satellite passes to construct the best cloud-free composite image) and 

unique data types (e.g. 7 bit sensor values), it is imperative to support user-defined 

extensibility. There are four mechanisms in SciDB to support user extensions. 

 

First, SciDB supports user-defined data types. These are similar to Postgres user 

defined types as they specify a storage length for a container to hold an object of the 
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given type. User-defined types allow a (sophisticated) user to extend the basic SciDB 

data types of integer, float, and string. Hence, the attribute values in a SciDB cell can 

be user-defined. 

 

Second, a user must be able to perform operations on new data types. For example, a 

user could define arbitrary precision float as a new data type and then would want to 

define operations like addition and subtraction on this type. User-defined functions 

are the mechanism for specifying such features. These are scalar functions that accept 

one or more arguments of various data types and produce a result of some data type. 

Again, the specification is similar to Postgres, and right now such functions must be 

written in C++. 

 

Third, SciDB supports user-defined aggregates, so that conventional aggregates can 

be written for user-defined types.  As well, science-specific aggregates can be written 

for built-in or user-defined data types. An aggregate requires four functions, along the 

lines of Postgres [16]. Three of the functions are the standard Init (), Increment (), and 

Final () that are required for any single node user-defined aggregate calculation. Since 

SciDB is a multi-node system, these three functions will be run for the data at each 

node. Subsequently, a rollup () must be specified to pull the various partial aggregates 

together into the final answer.  

 

The last extension mechanism in SciDB is user-defined array operators. These 

functions accept one or more arrays as arguments and usually produce an array as an 

answer. Although Join is a typical example, the real use case is to support linear 

algebra operations, such as matrix multiply, curve fitting, linear regression, equations 

solving and the like. Also in this category are data clustering codes and other machine 

learning algorithms. 

 

There are two wrinkles to array functions that are not present in standard Postgres 

table functions. As will be discussed in Section 2.6 SciDB decomposes storage into 

multi-dimensional chunks, which may overlap. Some array functions are 

embarrassingly parallel, i.e. they can be processed in parallel on a collection of 

computing nodes, with each node performing the same calculation on its data. 

However, some array functions can only be run in parallel if chunks overlap by a 

minimum amount, as discussed in more detail in Section 2.6. Hence, a user-defined 

array function must specify the minimum overlap for parallel operation. 

 

Second, many array operations are actually algorithms consisting of several steps, 

with conditional logic between the steps. For example, most algorithms to compute 

the inverse of a matrix proceed by iterating a core calculations several times. More 

complex operations may perform several different kinds of core operations, 

interspersed with conditional logic. Such logic may depend on the size or composition 

of intermediate results (e.g. an array column being empty). As such, a user-defined 

array operation must be able to run other operations, test the composition of 
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intermediate results and control its own parallelism. To accomplish this objective, 

SciDB has a system interface that supports these kinds of tasks. 

 

It should be noted that writing user-defined array operations is not for the faint of 

heart. We expect experts in the various science disciplines to write libraries to our 

interface that other scientists can easily use in AQL, without understanding their 

detailed composition. This is similar to ScaLAPACK [17], which was written by 

rocket scientists and widely used by mere mortals. 

2.5 Query Processing 

Users specify queries and updates in AQL, and the job of the optimizer and executor 

is to correctly solve such queries. We have several guiding principles in the design of 

this component of SciDB. 

 

First, we expect a common environment for SciDB is to run on a substantial number 

of nodes. As such, SciDB must scale to large configurations. Also, many science 

applications are CPU intensive. Hence, the user-defined functions that perform the 

complex analytics usually found in this class of problems are often CPU bound. Also, 

many are not “embarrassingly parallel”, and entail moving substantial amounts of 

data if one is not careful. Thus, the three guiding principles of query processing in 

SciDB are: 

 

Tenet 1: aim for parallelism in all operations with as little data movement as possible.  

 

This goal drives much of the design of the storage manager discussed in Section 2.6.  

Also, if an operation cannot be run in parallel because the data is poorly distributed, 

then SciDB will redistribute the data to enable parallelism. Hence, SciDB is 

fundamentally focused on providing the best response time possible for AQL 

utterances. 

 

Second, the optimizers in relational DBMSs often choose poor query plans because 

their cost functions entail predicting the size of intermediate results. If a query has 

three or four cascading intermediate results, then these size estimates become wildly 

inaccurate, resulting in a potentially poor choice of the best query plan. Because 

SciDB queries are expected to be complex, it is imperative to choose a good plan. 

 

To accomplish this goal, the SciDB optimizer processes the query parse tree in two 

stages. First, it examines the tree for operations that commute.  This is a common 

optimization in relational DBMSs, as filters and joins are all commutative. The first 

step in the SciDB optimizer is to push the cheaper commuting operation down the 

tree. In our world, we expect many user defined array operations will not commute.  

For example, re-gridding a satellite imagery data set will rarely, if ever, commute 

with operations above or below it in the tree.  Hence, this tactic may be less valuable 

than in a relational world. 
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The next step is to examine the tree looking for blocking operations. A blocking 

operation is one that either requires a redistribution of data in order to execute, or 

cannot be pipelined from the previous operation, in other words it requires a 

temporary array to be constructed. Note that the collection of blocking operations 

separates a query tree into sub-trees.  

 

Tenet 2: Incremental optimizers have more accurate size information and can use this 

to construct better query plans.  

 

The SciDB optimizer is incremental, in that it picks the best choice for the first sub-

tree to execute. After execution of this sub-tree, SciDB has a perfect estimate for the 

size of the result, and can use this information when it picks the next sub-tree for 

execution.  

 

Of course, the downside is that SciDB has a run-time optimizer. Such run-time 

overhead could not be tolerated in an OLTP world; however, most scientific queries 

run long enough that optimizer overhead is insignificant.  

 

Tenet 3: Use a cost-based optimizer.  

 

This third principle is to perform simple cost-based plan evaluation. Since SciDB only 

plans sub-trees, the cost of exhaustive evaluation of the options is not onerous.  

 

Right now the optimizer is somewhat primitive, and focuses on minimizing data 

movement and maximizing the number of cores that can be put to work, according to 

tenet 1.  

 

In summary, the optimizer/execution framework is the following algorithm: 

 

Until no more { 

Choose and optimize next sub-plan 

Reshuffle data, if required 

Execute a sub-plan in parallel on a collection of local nodes 

Collect size information from each local node 

} 

2.6 Storage of Arrays 

Basic Chunking. 

 

It is apparent that SciDB should chunk arrays to storage blocks using some (or even 

all) of the dimensions. In other words, a stride is defined in some or all of the 

dimensions, and the next storage block contains the next stride in the indicated 
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dimensions. Multiple dimension chunking was explored long ago in [18] and has been 

shown to work well.  Equally obviously, SciDB should chunk arrays across the nodes 

of a grid, as well as locally in storage. Hence, we distribute chunks to nodes using 

hashing, range partitioning, or a block-cyclic algorithm.  

 

In addition, chunks should be large enough to serve as the unit of I/O between the 

buffer pool and disk. However, CPU time can often be economized by splitting a 

chunk internally into tiles as noted in [19]. In this way, subset queries may be able to 

examine only a portion of a chunk, and economize total time. Hence, we support a 

two level chunk/tile scheme. 

 

One of the bread-and-butter operations in LSST is to examine raw imagery looking 

for interesting celestial objects (for example, stars). Effectively this is a data 

clustering problem; one is looking for areas of imagery with large sensor amplitude. 

In other areas of science, nearest neighbor clustering is also a very popular operation. 

For example, looking for islands in oceanographic data or regions of snow cover in 

satellite imagery entails exactly the same kind of clustering.  

 

To facilitate such neighborhood queries, SciDB contains two features. First, chunks in 

SciDB can be specified to overlap by a specific amount in each of several 

dimensions. This overlap should be the size of the largest feature that will be searched 

for. In this way, parallel feature extraction can occur without requiring any data 

movement. As a result, unlike parallel RDBMSs, which use non-overlapping 

partitions, SciDB supports the more general case.  

 

At array creation time, stride and overlap information must be specified in the create 

array command. Hopefully, overlap is specified to be the largest size required by any 

array function that does feature extraction. Also, every user-defined array operation 

specifies the amount of overlap it requires to be able to perform parallel execution. If 

insufficient overlap is present, then SciDB will reshuffle the data to generate the 

required overlap.  

Fixed or Variable Size Chunks. 

 

A crucial decision for SciDB was the choice of fixed or variable size chunks. One 

option is to fix the size of the stride in each dimension, thereby creating logically 

fixed size chunks. Of course, the amount of data in each chunk can vary widely 

because of data skew and differences in compressibility. In other words, the first 

option is fixed logical size but variable physical size chunks.  

 

The second option is to support variable logical size chunks. In this case, one fills a 

chunk to a fixed-size capacity, and then closes it, thereby a chunk encompasses a 

variable amount of logical array real estate. 
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Variable chunk schemes would require an R-tree or other indexing scheme to keep 

track of chunk definitions. However, chunks would be a fixed physical size, thereby 

enabling a simple fixed size main memory buffer pool of chunks. On the other hand, 

fixed size logical chunks allow a simple addressing scheme to find their containers; 

however, we must cope with variable size containers. 

 

We have been guided by [19] in deciding what to do. The “high level bit” concerns 

join processing. If SciDB joins two arrays, with the same fixed size chunking, then 

they can be efficiently processed in pairs, with what amounts to a generalization of 

merge-sort. If the chunking of the two arrays is different, then performance is much 

worse, because each chunk in the first array may join to several chunks in the second 

array. If chunking is different, then the best strategy may be to rechunk one array to 

match the other one, a costly operation as noted in [19].  

 

This argues for fixed chunking, since frequently joined arrays can be identically 

chunked. That will never be the case with variable chunking. Hence, SciDB uses 

fixed logical size chunks. Right now, the user executing the Create Array command 

specifies the size of these chunks. Obviously, a good choice makes a huge difference 

in performance. 

 

In summary, chunks are fixed (logical) size, and variable physical size. Each is stored 

in a container (file) on disk that can be efficiently addressed. The size of a chunk 

should average megabytes, so that the cost of seeks is masked by the amount of data 

returned. 

 

There are several extensions to the above scheme that are required for good 

performance. These result from our implementation of versions, our desire to perform 

skew management, and our approach to compression. These topics are addressed in 

the next three sections. 

Version Control. 

 

There are three problems which SciDB solves using version management. First, there 

is a lot of scientific data that is naturally temporal. LSST, for example, aims its 

telescope at the same portion of the sky repeatedly, thereby generating a time series. 

Having special support for temporal data seems like a good idea.  

 

Second, scientists never want to throw old data away. Even when the old data is 

wrong and must be corrected, a new value is written and the old one is retained. 

Hence, SciDB must be able to keep everything.  

 

The third problem deals with the “cooking” of raw data into derived information. In 

LSST, raw data is telescope imagery, and feature extraction is used to identify stars 

and other celestial objects, which constitute derived data. However, there is no 

universal feature extraction algorithm; different ones are used by different 
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astronomers for different purposes. As such, LSST supports a “base line” cooking 

process, and individual astronomers can recook portions of the sky that they are 

interested in. Hence, astronomers want the base line derived information for the 

whole sky, except for the portions they have recooked. Such versioning of data should 

be efficiently supported. 

 

To support the no overwrite model, all SciDB arrays are versioned. Data is loaded 

into the array at the time indicated in the loading process. Subsequent updates, inserts 

or bulk loads add new data at the time they are run, without discarding the previous 

information. As such, new information is written at the time it becomes valid. Hence, 

for a given cell, a query can scan particular versions referenced by timestamp or 

version number. 

 

We now turn to the question: “How are array versions stored efficiently?” As updates 

or inserts occur to a chunk, we have elected to keep the most up-to-date version of the 

chunk stored contiguously. Then, previous versions of the chunk are available as a 

chain of “deltas” referenced from the base chunk. In other words, we store a given 

chunk as a base plus a chain of “backwards deltas”. The rationale is that users 

usually want the most current version of a chunk, and retrieval of this version should 

be optimized. The physical organization of each chunk contains a reserved area, for 

example 20% additional space, to maintain the delta chain.  

 

Arrays suffixed with a timestamp can be used in scan queries. Since we expect 

queries of the state of the array at a specific time to be very popular, we allow the 

select arrayname@T shorthand popularized in Postgres.  If no specification is made, 

the system defaults to select arrayname@now.  

 

We turn briefly to support for named versions. A user can request a named version to 

be defined relative to a given materialized array at time T. At this point, no storage is 

allocated, and the time T is noted in the system catalogs. As updates to the named 

version are performed, new containers for stored chunks are allocated and updates 

recorded in the new chunks. Multiple updates are backwards chained, just like in 

normal arrays. Over time, a branch is constructed, which is maintained as a chain of 

deltas based on the base array at time T. Clearly a tree of such versions is possible.  

 

Query processing must start with the named version looking for data relevant to a 

given query. If no object exists in the version, its parent must be explored, ultimately 

leading back to the stored array from which the version was derived. This architecture 

looks much like configuration management systems, which implement similar 

functionality. A more elaborate version management solution is described in [20], and 

we may incorporate elements of this system into SciDB in the future. 

Skew Management. 
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Data in SciDB arrays may be extremely skewed for two reasons. As noted above, 

update traffic may be skewed. In addition, the density of non-null data may also be 

skewed. For example, consider a population database with geographic co-ordinates. 

The population density of New York City is somewhere around 1000000 times that of 

Montana. 

 

There are two skew issues which we discuss in this section: what to do with chunks 

that have too little data, and what to do with chunks that have too much data. 

 

Decades of system design experience dictates that it is advantageous to move data 

from disk to main memory in fixed size blocks (pages) versus variable size blocks 

(segments). The universal consensus was that fixed size blocks were easier to manage 

and performed better. Hence, SciDB has a fixed-size block model, where the main 

memory buffer pool is composed of a collection of fixed size slots containing 

“worthy” fixed size disk blocks. As noted above, this block size must be at least 

several megabytes. 

 

If the user specifies a chunk size that results in a chunk containing more than B bytes, 

then the chunk must be split. We cycle through the chunking dimensions, splitting 

each in turn. As such, actual chunks will be some binary tree refinement of the user-

specified chunk size. Unlike [19] which reports experiments on two chunk sizes, 

SciDB supports an arbitrary number of splits to keep the chunk size below B. 

 

If a chunk is too small, because it is sparsely populated with data, then it can 

accommodate many updates before it fills. In the meantime, it can be co-located in a 

disk block of size B with neighboring sparse chunks. The storage manager current 

performs this “bin packing”. 

Compression. 

 

All arrays are aggressively compressed on a chunk-by-chunk basis. Sparse arrays can 

be stored as a list of non-null values with their dimension indexes, followed by prefix 

encoding. Additionally, value encoding of many data types is also profitable. This can 

include delta encoding, run-length encoding, subtracting off an average value, and LZ 

encoding. The idea is that the compression system will examine a chunk, and then 

choose the appropriate compression scheme on a chunk-by-chunk basis. 

 

In addition, if the chunk is subject to intensive update or to small geographic queries, 

then it will spend much overhead decompressing and recompressing chunks to 

process either modest queries or updates. In this case, it makes sense to divide a 

chunk into tiles, and compress each tile independently. In this way, only relevant tiles 

need to be decompressed and recompressed to support these kinds of queries and 

updates. Hence, tiling will result in better performance on workloads with many small 

updates and/or small geographic queries. On a chunk-by-chunk basis, the 

compression system can optionally elect to tile the chunk.  
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Also, we have noted that some SciDB environments are CPU limited, and 

compressing and decompressing chunks or tiles is the “high pole in the tent”. In this 

case, SciDB should switch to a lighter weight compression scheme. 

 

The compression system is inside the storage manager and receives a new chunk or 

tile to encode. After encoding, the result is obviously variable sized, so the 

compression engine controls the splitting of chunks described above as well as the 

packing of small chunks into storage blocks mentioned in the previous section.  

Uncertainty. 

 

Essentially all science data is uncertain. After numerous conversations with scientists, 

they pretty much all say:  

 

Build in the common use case (normal distributions) to handle 80% of my data 

automatically. 

 

My other 20% is specific to my domain of interest, and I am willing to write error 

analysis code in my application to handle this. 

 

As such we have implemented both uncertain and precise versions of all of the 

common data types. Operating on precise data gives a precise answer; operating on 

uncertain data yields an uncertain answer. The uncertain versions of SciDB operations 

“do the right thing” and carry along errors in the internal calculations being 

performed. Moreover, a challenge to the compression system is to be smart about 

uncertainty. Specifically, most uncertain values in a chunk will have the same or 

similar error information. Hence, uncertainty information can be aggressively 

compressed 

 

Notice that SciDB supports uncertain cell values but not uncertain dimensions. That 

functionality would require us to support approximate joins, which is a future 

extension. 

Provenance. 

 

A key requirement for most science data is support for provenance. The common use 

case is the ability to point at a data value or a collection of values and say “show me 

the derivation of this data”. In other words, the data looks wrong, and the scientist 

needs to trace backwards to find the actual source of the error. Once, the source has 

been identified, it should be fixed, of course using the no-overwrite processing model. 

Then, the scientist wants to trace forward to find all data values that are derived from 

the incorrect one, so they can also be repaired. 
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In other words, SciDB must support the ability to trace both backward and forward. 

Some systems support coarse provenance (for example at the array level) that allow 

this functionality only for arrays, not cells. Since SciDB expects some very big arrays, 

this granularity is unacceptable. Other systems, e.g. Trio [21] store provenance by 

associating with each output value the identifier of all input values that contributed to 

the calculation. This approach will cause the data volumes to explode. For example, 

matrix multiply generates a cell from all the values in a particular source row and 

source column. If an array is of size M, then the provenance for matrix multiply will 

be of size M **3. This is obviously not an engineering solution. 

 

Our solution is to allow database administrators to specify the amount of space they 

are willing to allocate for provenance data.  The SciDB provenance system chooses 

how to best utilize this space, by varying the granularity of provenance information, 

on a command-by-command basis. The details of this system are discussed in [22]. 

 

Discussions with LSST personnel indicate a willingness to accept approximate 

provenance, if that can result in space savings or run time efficiency.  For example, 

many LSST operations are “region constrained”, i.e. the cell value that results from an 

operation comes from a constrained region in the input array. If true, approximate 

provenance can be supported by just recording the centroid of this region and its size. 

Often, the centroid is easily specified by a specific mapping from input to output, 

thereby further reducing the amount of provenance information that must be kept. The 

details of our approximate provenance are also discussed in [22]. 

In-situ Data. 

 

Most of the scientists we have talked to requested support for in-situ data. In this way, 

they can use some of SciDB’s capabilities without having to go through the effort of 

loading their data. This would be appropriate for data sets that are not repeatedly 

accessed, and hence not worth the effort to load. 

 

We are currently designing an interface (wrapper) that will allow SciDB to access 

data in other formats than SciDB natively understands.  The details of how to do this 

as well as how to make the optimizer understand foreign data are still being worked 

out. 

3 Summary, Status Performance, and Related Work  

3.1 Related Work 

SciDB is a commercial, open-source analytical database oriented toward scientific 

applications.  As such, it differs from RDBMSs, which must simulate arrays on top of 

a table data model. The performance loss in such a simulation layer may be extreme 

[6]. The loss of performance in linear algebra operations may be especially daunting 
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[23]. Also, most RDBMSs have trouble with complex analytics, because they are 

expressed on arrays, not tables. SciDB implements such operations directly, whereas 

RDBMSs, such as GreenPlum and Netezza, must convert a table to an array inside 

user-defined functions, then run the analytic code, and convert the answer back to a 

table to continue processing.  Such out-and-back conversion costs do not need to be 

paid by SciDB.  A similar comment can be made about interfaces between R [24] and 

RDBMSs. In addition, RDBMSs do not support multi-dimensional chunked storage, 

overlapping chunks, uncertainty, versions or provenance. 

 

MonetDB [25] has an array layer [26], implemented on top of its column store table 

system. All of the comments in the previous paragraph apply to it. Similarly 

RasDaMan [27] is an array DBMS. However, it is implemented as an application 

layer that used Postgres for blob storage. As such, it is implementing multi-dimension 

chunking in an application layer external to the DBMS. It also lacks overlapping 

chunks, version control, uncertainty and provenance. 

 

There are a myriad of statistical packages, including R [24], S [28], SAS [29], 

ScaLAPACK [17], and SPSS [30]. All of these perform complex analytics, often on a 

single node only, but perform no data management. SciDB is an integrated system to 

provide both data management and complex analytics. 

3.2 Status and Summary 

 

At the time of the SSDBM conference, SciDB version 11.06 will be available for 

download. SciDB development is backed by the commercial company Paradigm4 

who will provide support as well as offer extensions for the commercial marketplace 

(monitoring tools, proprietary function libraries, etc.) 

 

Development is proceeding with a global team of contributors across many time 

zones. Some are volunteers but at this early stage, most are employees of Paradigm4, 

including the engineering manager and chief architect. QA is being performed by 

volunteers in India and California.  User-defined extensions are underway in Illinois, 

Massachusetts, Russia, and California.  
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