
1

Real SQL Programming

Embedded SQL
Call-Level Interface

Java Database Connectivity

2

SQL in Real Programs

We have seen only how SQL is used at
the generic query interface --- an
environment where we sit at a terminal
and ask queries of a database.
Reality is almost always different.

Programs in a conventional language like C
are written to access a database by “calls”
to SQL statements.

3

Host Languages

Any conventional language can be a
host language, that is, a language in
which SQL calls are embedded.
The use of a host/SQL combination
allows us to do anything computable,
yet still get the very-high-level SQL
interface to the database.

4

Connecting SQL to the Host
Language

1. Embedded SQL is a standard for
combining SQL with seven languages.

2. CLI (Call-Level Interface) is a
different approach to connecting C to
an SQL database.

3. JDBC (Java Database Connectivity) is
a way to connect Java with an SQL
database.

5

Embedded SQL

Key idea: Use a preprocessor to turn
SQL statements into procedure calls
that fit with the host-language code
surrounding.
All embedded SQL statements begin
with EXEC SQL, so the preprocessor can
find them easily.

6

Shared Variables

To connect SQL and the host-language
program, the two parts must share
some variables.
Declarations of shared variables are
bracketed by:
EXEC SQL BEGIN DECLARE SECTION;

<host-language declarations>
EXEC SQL END DECLARE SECTION;

Always
needed

7

Use of Shared Variables

In SQL, the shared variables must be
preceded by a colon.

They may be used as constants provided
by the host-language program.
They may get values from SQL statements
and pass those values to the host-
language program.

In the host language, shared variables
behave like any other variable.

8

Example: Looking Up Prices

We’ll use C with embedded SQL to
sketch the important parts of a function
that obtains a beer and a bar, and looks
up the price of that beer at that bar.
Assumes database has our usual
Sells(bar, beer, price) relation.

9

Example: C Plus SQL

EXEC SQL BEGIN DECLARE SECTION;
char theBar[21], theBeer[21];
float thePrice;

EXEC SQL END DECLARE SECTION;
/* obtain values for theBar and theBeer */

EXEC SQL SELECT price INTO :thePrice
FROM Sells
WHERE bar = :theBar AND beer = :theBeer;
/* do something with thePrice */

Note 21-char
arrays needed
for 20 chars +
endmarker

SELECT-INTO
just like PSM

10

Embedded Queries

Embedded SQL has the same
limitations as PSM regarding queries:

You may use SELECT-INTO for a query
guaranteed to produce a single tuple.
Otherwise, you have to use a cursor.
• Small syntactic differences between PSM and

Embedded SQL cursors, but the key ideas are
identical.

11

Cursor Statements

Declare a cursor c with:
EXEC SQL DECLARE c CURSOR FOR <query>;

Open and close cursor c with:
EXEC SQL OPEN CURSOR c;
EXEC SQL CLOSE CURSOR c;

Fetch from c by:
EXEC SQL FETCH c INTO <variable(s)>;

Macro NOT FOUND is true if and only if the FETCH
fails to find a tuple.

12

Example --- (1)

Let’s write C + SQL to print Joe’s menu
--- the list of beer-price pairs that we
find in Sells(bar, beer, price) with bar =
Joe’s Bar.
A cursor will visit each Sells tuple that
has bar = Joe’s Bar.

13

Example --- (2: Declarations)

EXEC SQL BEGIN DECLARE SECTION;
char theBeer[21]; float thePrice;

EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE c CURSOR FOR

SELECT beer, price FROM Sells
WHERE bar = ’Joe’’s Bar’;

The cursor declaration goes
outside the declare-section

14

Example --- (3: Executable)

EXEC SQL OPEN CURSOR c;
while(1) {

EXEC SQL FETCH c
INTO :theBeer, :thePrice;

if (NOT FOUND) break;
/* format and print theBeer and thePrice */

}
EXEC SQL CLOSE CURSOR c;

The C style
of breaking
loops

15

Need for Dynamic SQL

Most applications use specific queries
and modification statements to interact
with the database.

The DBMS compiles EXEC SQL … statements
into specific procedure calls and produces an
ordinary host-language program that uses a
library.

What about sqlplus, which doesn’t know
what it needs to do until it runs?

16

Dynamic SQL

Preparing a query:
EXEC SQL PREPARE <query-name>

FROM <text of the query>;
Executing a query:

EXEC SQL EXECUTE <query-name>;
“Prepare” = optimize query.
Prepare once, execute many times.

17

Example: A Generic Interface

EXEC SQL BEGIN DECLARE SECTION;
char query[MAX_LENGTH];

EXEC SQL END DECLARE SECTION;
while(1) {

/* issue SQL> prompt */
/* read user’s query into array query */
EXEC SQL PREPARE q FROM :query;
EXEC SQL EXECUTE q;

}
q is an SQL variable
representing the optimized
form of whatever statement
is typed into :query

18

Execute-Immediate

If we are only going to execute the
query once, we can combine the
PREPARE and EXECUTE steps into one.
Use:

EXEC SQL EXECUTE IMMEDIATE <text>;

19

Example: Generic Interface Again

EXEC SQL BEGIN DECLARE SECTION;
char query[MAX_LENGTH];

EXEC SQL END DECLARE SECTION;
while(1) {
/* issue SQL> prompt */
/* read user’s query into array
query */
EXEC SQL EXECUTE IMMEDIATE :query;

}

20

SQL/CLI

Instead of using a preprocessor, we
can use a library of functions and call
them as part of an ordinary C program.

The library for C is called SQL/CLI = “Call-
Level Interface.”
Embedded SQL’s preprocessor will
translate the EXEC SQL … statements into
CLI or similar calls, anyway.

21

Data Structures

C connects to the database by structs
of the following types:

1. Environments : represent the DBMS
installation.

2. Connections : logins to the database.
3. Statements : SQL statements to be

passed to a connection.
4. Descriptions : records about tuples from a

query or parameters of a statement.

22

Environments, Connections,
and Statements

Function SQLAllocHandle(T,I,O) is used to
create these structs, which are called
environment, connection, and statement
handles.

T = type, e.g., SQL_HANDLE_STMT.
I = input handle = struct at next higher level
(statement < connection < environment).
O = (address of) output handle.

23

Example: SQLAllocHandle

SQLAllocHandle(SQL_HANDLE_STMT,
myCon, &myStat);

myCon is a previously created
connection handle.
myStat is the name of the statement
handle that will be created.

24

Preparing and Executing

SQLPrepare(H, S, L) causes the string
S, of length L, to be interpreted as an
SQL statement and optimized; the
executable statement is placed in
statement handle H.
SQLExecute(H) causes the SQL
statement represented by statement
handle H to be executed.

25

Example: Prepare and Execute

SQLPrepare(myStat, ”SELECT beer, price
FROM Sells WHERE bar = ’Joe’’s Bar’ ”,
SQL_NTS);

SQLExecute(myStat);

This constant says the second argument
is a “null-terminated string”; i.e., figure out
the length by counting characters.

26

Dynamic Execution

If we will execute a statement S only
once, we can combine PREPARE and
EXECUTE with:

SQLExecuteDirect(H,S,L);
As before, H is a statement handle and L
is the length of string S.

27

Fetching Tuples

When the SQL statement executed is a
query, we need to fetch the tuples of the
result.

That is, a cursor is implied by the fact we
executed a query, and need not be declared.

SQLFetch(H) gets the next tuple from
the result of the statement with handle
H.

28

Accessing Query Results

When we fetch a tuple, we need to
put the components somewhere.
Thus, each component is bound to a
variable by the function SQLBindCol.

This function has 6 arguments, of which
we shall show only 1, 2, and 4:
1 = handle of the query statement.
2 = column number.
4 = address of the variable.

29

Example: Binding

Suppose we have just done
SQLExecute(myStat), where myStat is
the handle for query

SELECT beer, price FROM Sells
WHERE bar = ’Joe’’s Bar’

Bind the result to theBeer and thePrice:
SQLBindCol(myStat, 1, , &theBeer, ,);
SQLBindCol(myStat, 2, , &thePrice, ,);

30

Example: Fetching

Now, we can fetch all the tuples of the
answer by:

while (SQLFetch(myStat) != SQL_NO_DATA)
{

/* do something with theBeer and
thePrice */

}
CLI macro representing
SQLSTATE = 02000 = “failed
to find a tuple.”

31

JDBC

Java Database Connectivity (JDBC) is a
library similar to SQL/CLI, but with Java
as the host language.
JDBC/CLI differences are often related
to the object-oriented style of Java, but
there are other differences.

32

Environments, Connections,
and Statements

The same progression from environments
to connections to statements that we saw
in CLI appears in JDBC.
A connection object is obtained from the
environment in a somewhat
implementation-dependent way.
We’ll start by assuming we have myCon,
a connection object.

33

Statements

JDBC provides two classes:
1. Statement = an object that can accept a

string that is an SQL statement and can
execute such a string.

2. PreparedStatement = an object that has
an associated SQL statement ready to
execute.

34

Creating Statements

The Connection class has methods to create
Statements and PreparedStatements.

Statement stat1 = myCon.createStatement();
PreparedStatement stat2 =

myCon.createStatement(
”SELECT beer, price FROM Sells ” +
”WHERE bar = ’Joe’’s Bar’ ”

);

Java trick: +
concatenates
strings.

createStatement with no argument returns
a Statement; with one argument it returns
a PreparedStatement.

35

Executing SQL Statements

JDBC distinguishes queries from
modifications, which it calls “updates.”
Statement and PreparedStatement
each have methods executeQuery and
executeUpdate.

For Statements, these methods have one
argument: the query or modification to be
executed.
For PreparedStatements: no argument.

36

Example: Update

stat1 is a Statement.
We can use it to insert a tuple as:

stat1.executeUpdate(
”INSERT INTO Sells ” +
”VALUES(’Brass Rail’, ’Bud’, 3.00)”

);

37

Example: Query

stat2 is a PreparedStatement holding
the query ”SELECT beer, price FROM
Sells WHERE bar = ’Joe’’s Bar’ ”.
executeQuery returns an object of class
ResultSet --- we’ll examine it later.
The query:

ResultSet Menu = stat2.executeQuery();

38

Accessing the ResultSet

An object of type ResultSet is
something like a cursor.
Method Next() advances the “cursor” to
the next tuple.

The first time Next() is applied, it gets the
first tuple.
If there are no more tuples, Next() returns
the value FALSE.

39

Accessing Components of Tuples

When a ResultSet is referring to a
tuple, we can get the components of
that tuple by applying certain methods
to the ResultSet.
Method getX (i), where X is some
type, and i is the component number,
returns the value of that component.

The value must have type X.

40

Example: Accessing Components

Menu is the ResultSet for the query “SELECT
beer, price FROM Sells WHERE bar = ‘Joe’’s Bar’”.
Access the beer and price from each tuple by:

while (Menu.Next()) {
theBeer = Menu.getString(1);
thePrice = Menu.getFloat(2);

/* do something with theBeer and
thePrice */

}

