
1

Object-Oriented Database
Languages

Object Description Language
Object Query Language

2

Object-Oriented DBMS’s

Standards group: ODMG = Object Data
Management Group.
ODL = Object Description Language,
like CREATE TABLE part of SQL.
OQL = Object Query Language, tries to
imitate SQL in an OO framework.

3

Framework --- (1)

ODMG imagines OO-DBMS vendors
implementing an OO language like C++
with extensions (OQL) that allow the
programmer to transfer data between
the database and “host language”
seamlessly.

4

Framework --- (2)

ODL is used to define persistent
classes, those whose objects may be
stored permanently in the database.

ODL classes look like Entity sets with
binary relationships, plus methods.
ODL class definitions are part of the
extended, OO host language.

5

ODL Overview

A class declaration includes:
1. A name for the class.
2. Optional key declaration(s).
3. Extent declaration = name for the set of

currently existing objects of the class.
4. Element declarations. An element is

either an attribute, a relationship, or a
method.

6

Class Definitions

class <name> {
<list of element declarations, separated

by semicolons>
}

7

Attribute and Relationship
Declarations

Attributes are (usually) elements with a
type that does not involve classes.

attribute <type> <name>;
Relationships connect an object to one
or more other objects of one class.

relationship <type> <name>
inverse <relationship>;

8

Inverse Relationships

Suppose class C has a relationship R
to class D.
Then class D must have some
relationship S to class C.
R and S must be true inverses.

If object d is related to object c by R,
then c must be related to d by S.

9

Example: Attributes and
Relationships

class Bar {
attribute string name;
attribute string addr;
relationship Set<Beer> serves inverse Beer::servedAt;

}
class Beer {

attribute string name;
attribute string manf;
relationship Set<Bar> servedAt inverse Bar::serves;

}

The type of relationship serves
is a set of Beer objects.

The :: operator connects
a name on the right to the
context containing that
name, on the left.

10

Types of Relationships

The type of a relationship is either
1. A class, like Bar. If so, an object with

this relationship can be connected to only
one Bar object.

2. Set<Bar>: the object is connected to a
set of Bar objects.

3. Bag<Bar>, List<Bar>, Array<Bar>: the
object is connected to a bag, list, or array
of Bar objects.

11

Multiplicity of Relationships

All ODL relationships are binary.
Many-many relationships have Set<…> for
the type of the relationship and its inverse.
Many-one relationships have Set<…> in the
relationship of the “one” and just the class for
the relationship of the “many.”
One-one relationships have classes as the
type in both directions.

12

Example: Multiplicity

class Drinker { …
relationship Set<Beer> likes inverse Beer::fans;
relationship Beer favBeer inverse Beer::superfans;

}
class Beer { …

relationship Set<Drinker> fans inverse Drinker::likes;
relationship Set<Drinker> superfans inverse
Drinker::favBeer;

}

Many-many uses Set<…>
in both directions.

Many-one uses Set<…>
only with the “one.”

13

Another Multiplicity Example

class Drinker {
attribute … ;
relationship Drinker husband inverse wife;
relationship Drinker wife inverse husband;
relationship Set<Drinker> buddies

inverse buddies;
}

husband and wife are
one-one and inverses
of each other.

buddies is many-many and its
own inverse. Note no :: needed
if the inverse is in the same class.

14

Coping With Multiway Relationships

ODL does not support 3-way or higher
relationships.
We may simulate multiway
relationships by a “connecting” class,
whose objects represent tuples of
objects we would like to connect by the
multiway relationship.

15

Connecting Classes

Suppose we want to connect classes X,
Y, and Z by a relationship R.
Devise a class C, whose objects
represent a triple of objects (x, y, z)
from classes X, Y, and Z, respectively.
We need three many-one relationships
from (x, y, z) to each of x, y, and z.

16

Example: Connecting Class

Suppose we have Bar and Beer classes,
and we want to represent the price at
which each Bar sells each beer.

A many-many relationship between Bar
and Beer cannot have a price attribute as it
did in the E/R model.

One solution: create class Price and a
connecting class BBP to represent a
related bar, beer, and price.

17

Example --- Continued

Since Price objects are just numbers,
a better solution is to:

1. Give BBP objects an attribute price.
2. Use two many-one relationships between

a BBP object and the Bar and Beer
objects it represents.

18

Example, Concluded

Here is the definition of BBP:
class BBP {

attribute price:real;
relationship Bar theBar inverse Bar::toBBP;
relationship Beer theBeer inverse Beer::toBBP;

}
Bar and Beer must be modified to include
relationships, both called toBBP, and both of
type Set<BBP>.

19

Structs and Enums

Attributes can have a structure (as in C)
or be an enumeration.
Declare with

attribute [Struct or Enum] <name of
struct or enum> { <details> }
<name of attribute>;
Details are field names and types for a
Struct, a list of constants for an Enum.

20

Example: Struct and Enum

class Bar {
attribute string name;
attribute Struct Addr

{string street, string city, int zip} address;
attribute Enum Lic

{ FULL, BEER, NONE } license;
relationship …

}

Names for the
structure and
enumeration

names of the
attributes

21

Method Declarations

A class definition may include
declarations of methods for the class.
Information consists of:

1. Return type, if any.
2. Method name.
3. Argument modes and types (no names).

Modes are in, out, and inout.
4. Any exceptions the method may raise.

22

Example: Methods

real gpa(in string)raises(noGrades);

1. The method gpa returns a real number
(presumably a student’s GPA).

2. gpa takes one argument, a string
(presumably the name of the student)
and does not modify its argument.

3. gpa may raise the exception noGrades.

23

The ODL Type System

Basic types: int, real/float, string,
enumerated types, and classes.
Type constructors:

Struct for structures.
Collection types : Set, Bag, List, Array, and
Dictionary (= mapping from a domain type
to a range type).

Relationship types can only be a class or
a single collection type applied to a class.

24

ODL Subclasses

Usual object-oriented subclasses.
Indicate superclass with a colon and its
name.
Subclass lists only the properties
unique to it.

Also inherits its superclass’ properties.

25

Example: Subclasses

Ales are a subclass of beers:
class Ale:Beer {
attribute string color;

}

26

ODL Keys

You can declare any number of keys for
a class.
After the class name, add:

(key <list of keys>)
A key consisting of more than one
attribute needs additional parentheses
around those attributes.

27

Example: Keys

class Beer (key name) { …

name is the key for beers.
class Course (key
(dept,number),(room, hours)){

dept and number form one key; so do
room and hours.

28

Extents

For each class there is an extent, the
set of existing objects of that class.

Think of the extent as the one relation with
that class as its schema.

Indicate the extent after the class
name, along with keys, as:

(extent <extent name> …)

29

Example: Extents

class Beer
(extent Beers key name) { …

}

Conventionally, we’ll use singular for
class names, plural for the
corresponding extent.

30

OQL

OQL is the object-oriented query
standard.
It uses ODL as its schema definition
language.
Types in OQL are like ODL’s.
Set(Struct) and Bag(Struct) play the role
of relations.

31

Path Expressions

Let x be an object of class C.
1. If a is an attribute of C, then x.a is the

value of that attribute.
2. If r is a relationship of C, then x.r is the

value to which x is connected by r.
Could be an object or a set of objects,
depending on the type of r.

3. If m is a method of C, then x.m (…) is
the result of applying m to x.

32

Running Example

class Sell (extent Sells) {
attribute real price;
relationship Bar bar inverse Bar::beersSold;
relationship Beer beer inverse Beers::soldBy;

}
class Bar (extent Bars) {

attribute string name;
attribute string addr;
relationship Set<Sell> beersSold inverse Sell::bar;

}

33

Running Example --- Concluded

class Beer (extent Beers) {
attribute string name;
attribute string manf;
relationship Set<Sell> soldBy inverse Sell::beer;

}

34

Example: Path Expressions

Let s be a variable of type Sell, i.e., a
bar-beer-price object.

1. s.price = the price in object s.
2. s.bar.addr = the address of the bar we

reach by following the bar relationship
in s.

Note the cascade of dots is OK here, because
s.bar is an object, not a collection of objects.

35

Example: Illegal Use of Dot

We cannot apply the dot with a
collection on the left --- only with a
single object.
Example (illegal), with b a Bar object:

b.beersSold.price

This expression is a set of Sell objects.
It does not have a price.

36

OQL Select-From-Where

We may compute relation-like
collections by an OQL statement:

SELECT <list of values>
FROM <list of collections and names for

typical members>
WHERE <condition>

37

FROM Clauses

Each term of the FROM clause is:
<collection> <member name>

A collection can be:
1. The extent of some class.
2. An expression that evaluates to a

collection, e.g., certain path expressions
like b.beersSold .

38

Example

Get the menu at Joe’s Bar.
SELECT s.beer.name, s.price
FROM Sells s
WHERE s.bar.name = “Joe’s Bar”

Sells is the extent
representing all
Sell objects; s
represents each
Sell object, in turn.

Legal expressions.
s.beer is a beer
object and s.bar
is a Bar object.

Notice OQL
uses double-quotes.

39

Another Example

This query also gets Joe’s menu:
SELECT s.beer.name, s.price
FROM Bars b, b.beersSold s
WHERE b.name = “Joe’s Bar”

b.beersSold is a set of Sell objects,
and s is now a typical sell object
that involves Joe’s Bar.

40

Trick For Using Path Expressions

If a path expression denotes an object,
you can extend it with another dot and a
property of that object.

Example: s, s.bar, s.bar.name .
If a path expression denotes a collection
of objects, you cannot extend it, but you
can use it in the FROM clause.

Example: b.beersSold .

41

The Result Type
As a default, the type of the result of
select-from-where is a Bag of Structs.

Struct has one field for each term in the
SELECT clause. Its name and type are taken
from the last name in the path expression.

If SELECT has only one term, technically
the result is a one-field struct.

But a one-field struct is identified with the
element itself.

42

Example: Result Type

SELECT s.beer.name, s.price
FROM Bars b, b.beersSold s
WHERE b.name = “Joe’s Bar”

Has type:
Bag(Struct(name: string, price: real))

43

Renaming Fields

To change a field name, precede that term by
the name and a colon.
Example:
SELECT beer: s.beer.name, s.price
FROM Bars b, b.beersSold s
WHERE b.name = “Joe’s Bar”

Result type is
Bag(Struct(beer: string, price: real)).

44

Producing a Set of Structs

Add DISTINCT after SELECT to make the result
type a set, and eliminate duplicates.
Example:

SELECT DISTINCT s.beer.name, s.price
FROM Bars b, b.beersSold s
WHERE b.name = “Joe’s Bar”

Result type is
Set(Struct(name: string, price: string))

45

Subqueries

A select-from-where expression can
be surrounded by parentheses and
used as a subquery in several ways,
such as:

1. In a FROM clause, as a collection.
2. In EXISTS and FOR ALL expressions.

46

Example: Subquery in FROM

Find the manufacturers of beers sold at
Joe’s:

SELECT DISTINCT b.manf
FROM (

SELECT s.beer FROM Sells s
WHERE s.bar.name = “Joe’s Bar”

) b

Bag of Beer objects for
the beers sold by Joe

Technically a one-field struct containing a Beer
object, but identified with that object itself.

47

Quantifiers

Two boolean-valued expressions for
use in WHERE clauses:

FOR ALL x IN <collection> : <condition>
EXISTS x IN <collection> : <condition>

True if and only if all members (resp. at
least one member) of the collection
satisfy the condition.

48

Example: EXISTS

Find all names of bars that sell at least
one beer for more than $5.

SELECT b.name FROM Bars b
WHERE EXISTS s IN b.beersSold :

s.price > 5.00

At least one Sell object for bar
b has a price above $5.

49

Another Quantifier Example

Find the names of all bars such that the
only beers they sell for more than $5
are manufactured by Pete’s.

SELECT b.name FROM Bars b
WHERE FOR ALL be IN (

SELECT s.beer FROM b.beersSold s
WHERE s.price > 5.00

) : be.manf = “Pete’s”

Bag of Beer objects
(inside structs) for
all beers sold by bar
b for more than $5.

One-field structs are unwrapped automatically,
so be may be thought of as a Beer object.

50

Simple Coercions

As we saw, a one-field struct is
automatically converted to the value of
the one field.

Struct(f : x) coerces to x.

A collection of one element can be
coerced to that element, but we need
the operator ELEMENT.

E.g., ELEMENT(Bag(x)) = x.

51

Aggregations

AVG, SUM, MIN, MAX, and COUNT apply to
any collection where they make sense.
Example: Find and assign to x the average
price of beer at Joe’s:

x = AVG(
SELECT s.price FROM Sells s
WHERE s.bar.name = “Joe’s Bar”

);
Bag of structs with the prices
for the beers Joe sells.

