Object-Oriented Database
Languages

Object Description Language
Object Query Language

Object-Oriented DBMS’s

Standards group: ODMG = Object Data
Management Group.

€ ODL = Object Description Language,
like CREATE TABLE part of SQL.

€ OQL = Object Query Language, tries to
Imitate SQL in an OO framework.

Framework --- (1)

€ ODMG imagines OO-DBMS vendors
Implementing an OO language like C++
with extensions (OQL) that allow the
programmer to transfer data between
the database and “host language”
seamlessly.

Framework --- (2)

€ ODL is used to define persistent
classes, those whose objects may be
stored permanently in the database.

* ODL classes look like Entity sets with
binary relationships, plus methods.

+ ODL class definitions are part of the
extended, OO host language.

ODL Overview

® A class declaration includes:
1. A name for the class.
2. Optional key declaration(s).

3. Extent declaration = name for the set of
currently existing objects of the class.

4. Element declarations. An element is
either an attribute, a relationship, or a
method.

Class Definitions

class <name> {
<l|ist of element declarations, separated
by semicolons>

Attribute and Relationship

Declarations
@ Attributes are (usually) elements with a
type that does not involve classes.
attribute <type> <name>,

@ Relationships connect an object to one
or more other objects of one class.

relationship <type> <name>
Inverse <relationship>;

Inverse Relationships

@ Suppose class C has a relationship R
to class D.

® Then class O must have some
relationship S to class C.
€~ and S must be true inverses.

* If object d Is related to object ¢ by A,
then ¢ must be related to @ by S.

Example: Attributes and
Relationships

class Bar {
attribute string name;
attribute string addr;

The type of relationship serves
IS a set of Beer objects.

relationship serves inverse i
1 /!
The :: operator connects
class Beer { a name on the right to the
attribute string name; context containing that
attribute string manf; name, on the left.

relationship Set<Bar> servedAt inverse Bar::serves;

}

Types of Relationships

€ The type of a relationship is either

1. Aclass, like Bar. If so, an object with
this relationship can be connected to only
one Bar object.

2. Set<Bar>: the object is connected to a
set of Bar objects.

3. Bag<Bar>, List<Bar>, Array<Bar>: the
object Is connected to a bag, list, or array
of Bar objects.

10

Multiplicity of Relationships

@ All ODL relationships are binary.

€ Many-many relationships have Set<...> for
the type of the relationship and its inverse.

€ Many-one relationships have Set<...> in the
relationship of the “one” and just the class for
the relationship of the “many.”

€ One-one relationships have classes as the
type In both directions.

11

Example:

class Drinker { ...

relationship

Multiplicity

likes inverse Beer::fans;

Many-many uses Set<...>

relationship errse Beer::superfans;
} \

class Beer { ...

/ in both directions.

relationship \

fans inverse Drinker::likes:

\

relationship \

superfans inverse

Drinker::favBeer; \ f

} Many-one uses Set<...>
only with the “one.”

12

Another Multiplicity Example

husband and wife are
one-one and inverses
of each other.

class Drinker {
attribute ... ;
relationship Drinker
relationship Drinker
relationship Set<Drinker> buddies

} 2
buddies is many-many and its

own inverse. Note no :: needed
if the inverse is in the same class.

13

Coping With Multiway Relationships

€ ODL does not support 3-way or higher
relationships.

€ \We may simulate multiway
relationships by a “connecting” class,
whose objects represent tuples of
objects we would like to connect by the
multiway relationship.

14

Connecting Classes

€ Suppose we want to connect classes X,
Y, and Z by a relationship ~.

@ Devise a class C, whose objects
represent a triple of objects (x, y, 2)
from classes X, Y, and Z, respectively.

¥ We need three many-one relationships
from (X,)y, 2) to each of x, y, and

15

Example: Connecting Class

€ Suppose we have Bar and Beer classes,
and we want to represent the price at
which each Bar sells each beer.

+ A many-many relationship between Bar
and Beer cannot have a price attribute as it
did in the E/R model.

4 . create class Price and a
connecting class BBP to represent a
related bar, beer, and price.

16

Example --- Continued

€ Since Price objects are just numbers,
a better solution Is to:

1.
2.

Glve BBP objects an attribute price.

Use two many-one relationships between
a BBP object and the Bar and Beer
objects It represents.

17

Example, Concluded

@ Here is the definition of BBP:

class BBP {
attribute price:real,
relationship Bar theBar inverse Bar::toBBP;
relationship Beer theBeer inverse Beer::toBBP;

}

€ Bar and Beer must be modified to include
relationships, both called toBBP, and both of

type Set<BBP>.

18

Structs and Enums

@ Attributes can have a structure (as in C)
or be an enumeration.

@ Declare with

attribute [Struct or Enum] <name of
struct or enum> { <detalls> }
<name of attribute>;

@ Details are field names and types for a
Struct, a list of constants for an Enum.

19

Example: Struct and Enum

class Bar { Names for the
structure and

attribute string name,; enumeration
attribute Struct

{string street, stfing city, int zip}

attribute Enum
{ FULL, BEER, NONE } :

relationship ... A\
names of the

} attributes

20

Method Declarations

€ A class definition may include

declarations of methods for the class.

® Information consists of:

1. Return type, Iif any.
2. Method name.

3. Argument modes and types (no names).

+ Modes are in, out, and inout.
4. Any exceptions the method may raise.

21

Example: Methods

real gpa(in string)raises(noGrades);

1. The method gpa returns a real number
(presumably a student’s GPA).

2. gpa takes one argument, a string
(presumably the name of the student)
and does not modify its argument.

3. gpa may raise the exception noGrades.

22

The ODL Type System

® Basic types: int, real/float, string,
enumerated types, and classes.

€ Type constructors:
¢ Struct for structures.

* Collection types . Set, Bag, List, Array, and
Dictionary (= mapping from a domain type
to a range type).

@ Relationship types can only be a class or
a single collection type applied to a class.

23

ODL Subclasses

€ Usual object-oriented subclasses.

@ Indicate superclass with a colon and its
name.

@ Subclass lists only the properties
unique to It.

* Also Inherits its superclass’ properties.

24

Example: Subclasses

@® Ales are a subclass of beers:
class Ale:Beer {

attribute string color;

¥

25

ODL Keys

€ You can declare any number of keys for
a class.

& After the class name, add:
(key <list of keys>)

@ A key consisting of more than one
attribute needs additional parentheses
around those attributes.

26

Example: Keys

class Beer (key name) { ..

€ name is the key for beers.

class Course (key
(dept,number), (room, hours)){

@ dept and number form one key; so do
room and hours.

27

Extents

@ For each class there is an extent, the
set of existing objects of that class.

* Think of the extent as the one relation with
that class as Its schema.

@ Indicate the extent after the class
name, along with keys, as:

(extent <extent name> ...)

28

Example: Extents

class Beer
(extent Beers key name) { ..

¥

@ Conventionally, we’ll use singular for
class names, plural for the
corresponding extent.

29

O0L

€ 0QL is the object-oriented query
standard.

@ It uses ODL as its schema definition
language.

€ Types in OQL are like ODL's.

@ Set(Struct) and Bag(Struct) play the role
of relations.

30

Path Expressions

€ Let x be an object of class C.

1. If a i1s an attribute of C, then x.a Is the
value of that attribute.

2. If r is arelationship of C, then x.r is the

value to which x Is connected by r.

¢+ Could be an object or a set of objects,
depending on the type of r.

3. If m is a method of C, then x.m(...) Is
the result of applying m to x.

31

Running Example

class Sell (extent Sells) {
attribute real price;
relationship Bar bar inverse Bar::beersSold,;
relationship Beer beer inverse Beers::soldBy;
}
class Bar (extent Bars) {
attribute string name;
attribute string addr;
relationship Set<Sell> beersSold inverse Sell::bar;

}

32

Running Example --- Concluded

class Beer (extent Beers) {
attribute string name;
attribute string manf;
relationship Set<Sell> soldBy inverse Sell::beer;

}

33

Example: Path Expressions

€ Let s be a variable of type Sell, i.e., a
bar-beer-price object.

1. s.price = the price In object s.

2. S.bar.addr = the address of the bar we
reach by following the bar relationship
In S.
+ Note the cascade of dots is OK here, because
s.bar Is an object, not a collection of objects.

34

Example: lllegal Use of Dot

€ \We cannot apply the dot with a
collection on the left --- only with a
single object.

& Example (illegal), with & a Bar object:

N

This expression is a set of Sell objects.
It does not have a price.

35

OQL Select-From-Where

¥ \We may compute relation-like
collections by an OQL statement:

SELECT <list of values>

FROM <list of collections and names for
typical members>

WHERE <condition>

36

FROM Clauses

® Each term of the FROM clause is:
<collection> <member name>

® A collection can be:
1. The extent of some class.

2. An expression that evaluates to a

collection, e.qg., certain path expressions
like b.beersSold .

37

Example

® Get the menu at Joe’s Bar.

SELECT , S.price
FROM /
RE / =
N/

Sells is the extent
representing all
Sell objects; s
represents each
Sell object, Iin turn.

Legal expressions.
s.beer is a beer
object and s.bar
IS a Bar object.

Notice OQL
uses double-quotes.

38

Another Example

€ This query also gets Joe’'s menu:
SELECT s.beer.name, s.price
FROM Bars b,
WHERE b.name =|“Joe’s Bar”

b.beersSold is a set of Sell objects,
and s is now a typical sell object
that involves Joe’s Bar.

39

Trick For Using Path Expressions

@ If a path expression denotes an object,
you can extend it with another dot and a
property of that object.

¢ Example: s, s.bar, s.bar.name .

@ If a path expression denotes a collection
of objects, you cannot extend it, but you
can use it in the FROM clause.

¢ Example: b.beersSold .

40

The Result Type

® As a default, the type of the result of
select-from-where Is a Bag of Structs.

¢ Struct has one field for each term in the
SELECT clause. Its name and type are taken
from the last name In the path expression.

@ If SELECT has only one term, technically
the result Is a one-field struct.

+ But a one-field struct is identified with the
element itself.

41

Example: Result Type

SELECT s.beer.name, s.price
FROM Bars b, b.beersSold s

WHERE b_.name = “Joe’s Bar”

@ Has type:

42

Renaming Fields

€ To change a field name, precede that term by
the name and a colon.

€ Example:
SELECT beer:
FROM Bars b,
WHERE b.name

@ Result type is

.beer._name, s.price
.beersSold s
““Joe’s Bar”™

o O

43

Producing a Set of Structs

€ Add DISTINCT after SELECT to make the result
type a set, and eliminate duplicates.

¢ .
SELECT DISTINCT s.beer.name, s.price

FROM Bars b, b._beersSold s
WHERE b.name = “Joe’s Bar”

@ Result type is

44

Subqueries

€ A select-from-where expression can
be surrounded by parentheses and
used as a subquery in several ways,
such as:
1. In a FROM clause, as a collection.
2. In EXISTS and FOR ALL expressions.

45

Example: Subquery in FROM

® Find the manufacturers of beers sold at

Joe’s:
Bag of Beer objects for

SELECT DISTINCT b.manf e eers cort oy soe
FROM (

) \ Technically a one-field struct containing a Beer

object, but identified with that object itself. -

Quantifiers

€ Two boolean-valued expressions for
use In WHERE clauses:

FOR ALL x IN <collection> : <condition>
EXISTS x IN <collection> : <condition>

€ True if and only if all members (resp. at
least one member) of the collection
satisfy the condition.

47

Example: EXISTS

®Find all names of bars that sell at least
one beer for more than $5.

SELECT b.name FROM Bars b
WHER

At least one Sell object for bar
b has a price above $5.

48

Another Quantifier Example

€ Find the names of all bars such that the
only beers they sell for more than $5
are manufactured by Pete’s.

SELECT b.name FROM Bars b Bag of Beer objects

WHERE FOR ALL be IN ((inside structs) for
all beers sold by bar

b for more than $5.

\ One-field structs are unwrapped automatically,
so be may be thought of as a Beer object. ,q

Simple Coercions

&® As we saw, a one-field struct is
automatically converted to the value of
the one field.

¢ Struct(7: x) coerces to x.
& A collection of one element can be

coerced to that element, but we need
the operator ELEMENT.

+ E.g., ELEMENT(Bag(x)) = x.

50

Aggregations

®AVG, SUM, MIN, MAX, and COUNT apply to
any collection where they make sense.

®Example: Find and assign to x the average
price of beer at Joe’s:

X = AVG(

Bag of structs with the prices
for the beers Joe sells. 51

