
When to Use an ODBMS
By Rick Grehan

Before we begin, we should acknowledge reality. There are situations in which an RDBMS works just
fine. There are plenty of remarkably good applications out there that have been running on relational
databases for years. Similarly, there are remarkably good RDBMS packages available. In fact, two
noteworthy open-source RDBMS products -- MySQL and PostgreSQL -- are by anyone's measure
wonderful products.

However, there are times when the superior database for an application is an ODBMS. Below is a list
(not exhaustive) of those sorts of applications in which ODBMSes tend to provide a better solution than
RDBMSes.

Embedded DBMS Applications
Embedded DBMS Applications might involve a database on partially connected mobile devices or as a
OO data cache in an application that demands a super-fast response time. If you are using Java or
.NET, this requires a self-contained, non-intrusive, and easy-to-deploy persistence solution for the
client-side or in the middleware.

Why? Storing Java or .NET objects 'just as they are in memory' is always the leanest and least intrusive
way to implement a persistence solution. Using an RDBMS requires the overhead of object-relational
mapping, resulting in an increased demand on resources. In addition, an RDBMS approach requires
greater administration involvement, especially when you must deploy updated class schemes to your
installed base.

Complex Data Relationships
Or, more precisely, complex object relationships. In such applications, classes define multiple cross-
references among themselves. Applications that include networked data structures fall into this
category.

Why? Complex cross referencing among objects can be difficult and error-prone to model in a
relational database system. Relationships among objects are often dealt with (in an RDBMS) using
foreign keys. So, fetching an object -- and then fetching objects it references, and then the objects they
reference -- can result in complicated and difficult-to-maintain code.

Meanwhile, most ODBMSes implement reachability persistence. That means that any object
referenced by a persistent object is also persistent. (If Object A references Object B, and
Object A is persistent ... then Object B becomes persistent automatically.) Typically, the depth to
which reachability persistence extends in an object tree can be specified by the programmer. As a
result, whole "gobs" of objects can be stored or fetched with a single call; the ODBMS engine handles
the details of maintaining the references when objects are stored, and satisfying them when objects are
fetched.

1

'Deep' Object Structures
This is related to the preceding item. Not all data is easily organized into the tabular, rows-and-column
form that one associates with RDBMSes. Some data is best organized in 'unusual' graph structures, or
various sorts of tree structures. A very "deep" tree structure, for example, presents to the database
programmer a lengthy parent, child, grandchild, great-grandchild, etc. string of references that can be
tricky to support in an RDBMS.

Why? As above, highly-connected object structures are not easily translated to "fit" into a relational
database. The conversion code can be confusing and difficult to maintain (in one sense, the original
structure is lost in the translation). It might also be prone to integrity corruption (e.g. only a 'piece' of
the tree gets stored), and requires large sections of code to be wrapped in transactions to safeguard the
data relations ... thus impeding performance in multiuser applications.

As above, an ODBMS requires no translation of the original structure into a model for the database. If
the ODBMS provides programmer control over the depth of reachability persistence, the developer can
control whether a whole tree is fetched or stored, a branch is fetched or stored, or individual twigs are
fetched and stored. And, again, the integrity of the structure is preserved by the database engine itself.

Changing Data (Object) Structures
Suppose you anticipate that the class structures of your application will change over time. Perhaps you
recognize that there's a good probability that new data members will be added, or new object
relationships will have to be added. (Most applications evolve as they age; and the data structures they
support must evolve as well.)

Why? An ODBMS will typically weather data structure changes more easily than an RDBMS. If you
use an RDBMS, you'll likely have to change the schema (to fit the new object structure), then alter the
query code to handle the changes. You may even have to write a one-time conversion application to
update the tables to the new format (the sort of throw-away application you only write when you must,
and wish you didn't have to waste the time doing).

Some ODBMSes allow you to change the structure of objects "on the fly". You can mingle "old" and
"new" objects in the same database. If the new object structure has additional fields, reading an old
object into the new application simply loads the additional fields with default (e.g., null or zero) values.
If the new object structure has fewer fields, reading an old object into the new application skips the
now non-existent fields. (The ODBMS db4o, for example, even provides a mechanism whereby "old"
objects can be "upgraded" to new objects invisibly ... as they are accessed from the database.)

Your Development Team is Using Agile Techniques
Agile programming techniques are rapidly gaining in popularity as they demonstrate their benefit in
reducing development errors. An ODBMS will fit more smoothly into Agile development than an
RDBMS.

Why? We could not say this better than agile guru Scott Ambler in his whitepaper for the
ODBMS.ORG portal:

Modern software development processes are evolutionary in nature, but more often than
not agile. Agile techniques include refactoring, agile modeling, continual regression

2

file:///C:/Inetpub/wwwroot/odbms.org/experts.html#article3
file:///C:/Inetpub/wwwroot/odbms.org/experts.html#article3
file:///C:/Inetpub/wwwroot/odbms.org/about_contributors_ambler.html

testing, configuration management of all development assets, and separate sandboxes for
developers to work in. The use of relational database (RDBMS) technology complicates the
adoption of these techniques due to the technical impedance mismatch, the cultural
impedance mismatch, and the current lack of tool support. Object databases (ODBMSs)
make it easier to be agile.

You're Programming in an OO Language
This might seem so obvious that it's almost ludicrous to bring up ... but it should not be discounted.

Why? Think about it. Using an ODBMs instead of an RDBMs means that you don't have to write
translation code to pass data back and forth between row objects fetched from the database and actual
objects in your application. Nor do you have to write object/schema mapping code (if you're using an
ORDBMS). This could be an important consideration if, for example, you have to maintain multiple
applications that access the same database, but in slightly different ways. In such a situation, you have
to make sure that all of the translation code in all of the different applications are in synchronization.
And, if something changes in the structure of the database, you have to search through all your
applications and make sure that the change is properly accounted for.

With an ODBMS, the access is the same from all applications ... because the objects being fetched and
stored are being manipulated in the same way. And, if you've properly factored your applications, a
change in the class structure is a change to a single library. No searching through applications to fix up
the translation code.

Your Objects Include Collections
Your application includes one or more classes that define members that are collections (a List, a
Set, etc.)

Why? A collection within an object often represents a one-to-many relationship. Such relationships,
modeled by an RDBMS, require an intermediate table, that serves as the link between the "parent"
object (kept in one table) and the objects in the collection (kept in another table). The whole matter
becomes even trickier if the collection is allowed to store objects of different classes.

Meanwhile, most ODBMSes would have no trouble with such an arrangement. The collection is treated
as just another object (albeit a potentially 'deep' object), and most ODBMSes will allow you to fetch
and store the parent object -- along with its member collection and all the contents -- with a single call.

Data is Accessed by Navigation Rather Than Query
This is actually related to the first two items listed on this page. It is often a natural consequence of
such object structures.

Why? If data is stored in a highly-networked structure, and data access if primarily via navigation
through the object structure, rather than a query on data values, an ODBMS is almost certainly
superior. Navigation through the tree -- using an RDBMS -- resolves into a series of query-and-fetch
operations (typically, SQL SELECT statements). In an ODBMS, navigation through the tree is
expressed naturally using the native language's constructs. The resulting code is easier to understand

3

and maintain.

Conclusion
As we stated at the outset, there are some instances in which using an RDBMS makes practical sense.
We have described various circumstances in which the use of an ODBMS is a more natural choice.

Rick Grehan is a QA Engineer at Compuware/Numega labs, where he has worked on Java and .NET
projects.
He is also a contributing editor for InfoWorld Magazine. His work has appeared in Embedded Systems
Programming, EDN, The Microprocessor Report, and Computer Design. Before coming to
Compuware, Rick was on the Discover DSP Project at Metrowerks, Inc.
Earlier, Rick was a Senior Editor at BYTE Magazine, where he was the Lab Director, and authored
BYTE's JavaTalk column.

4

	Embedded DBMS Applications
	Complex Data Relationships
	'Deep' Object Structures
	Changing Data (Object) Structures
	Your Development Team is Using Agile Techniques
	You're Programming in an OO Language
	Your Objects Include Collections
	Data is Accessed by Navigation Rather Than Query
	Conclusion

