
Object Persistence Design Guidelines



220 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Motivation
• Design guideline supports architects and developers in design 

and development issues of binding object-oriented applications 
to data sources

• The major task is to give an overview of the most important and 
common principles referred to literature, preferably in the internet



320 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Contents

• Motivation 
• Common Design Principles 
• Datasource Connector 
• Persistence Layer 
• Decoupling Business Logic and Persistence



420 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Common Design Principles
• Hard-coding SQL in your user-interface classes and/or 

domain/business classes results in a code that is difficult to 
maintain and extend. Therefore these classes should not directly
access your persistence mechanisms.

• RDBMS-based referential integrity mechanisms are essential in 
most enterprise applications. We recommended that applications 
should not rely on the application's Java code as the sole 
guardian of data integrity.

• Views can be useful to simplify queries and enable O/R mapping. 
However the level of support depends on the underlying 
database, e.g. joint views are partially updateable in Oracle 7.3 
and later. Cloudscape 3.6 does not support this feature.

• Don't try to write your own O/R mapping framework. If you need 
one, use an existing solution.



520 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Datasource Connector (I/III)
• Multi-object actions: Persistence layer have to support multi-object 

actions, e.g.
PreparedStatement stmt = con.prepareStatement(

"INSERT INTO employees VALUES (?, ?)");

stmt.setInt(1, 2000);

stmt.setString(2, "Kelly Kaufmann");

stmt.addBatch();

stmt.setInt(1, 3000);

stmt.setString(2, "Bill Barnes");

stmt.addBatch();

// submit the batch for execution

int[] updateCounts = stmt.executeBatch();

• StoredProcedures: We do not recommend the use of stored 
procedures in general. Technical and performance issues are 
exceptional situations for using stored procedures



620 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Datasource Connector (II/III)
• Various RDBMS versions and/or Vendors: Be careful about Date, Time and 

Timestamp and Boolean. 
– Oracle just has Date (which is really a timestamp to seconds)
– Sybase has DateTime (which has milliseconds, but not microseconds)
– DB/2 Date, Time and TimeStamp to microseconds
– DB/2 does not support Boolean 

• Native and non-native drivers
– JDBC functionality may not be exactly as it appears in the ads
– Not all drivers work with the same semantic
– Problems with Date formats, BLOBS; 
– Differences in stored procedure support.
– JDBC-ODBC looses precision beyond for NUMERIC > 15 digits
– Lots of good drivers out there, just be aware
– Different JDBC-Driver types
– e-Platform recommends the use of the Sequal driver



720 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Datasource Connector (III/III)
• JDBC-Layer: 

– The JDBC API is too low-level for using it directly as a viable 
option. When using JDBC, always use helper classes to simplify 
the application code. 

– e-Platforms recommendation is to use the Spring JDBC FW 
(JDBC level persistence FW)



820 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer 
Persistence layers hide developers from the details of storing 

objects. They have to provide a common interface for the 
business/domains objects to support CRUD operations. 
Consequently the persistence layer is responsible, among 
others, for the
– mapping of the objects to database tables
– SQL generation 
– correct ordering of the database operations. 

• A persistence layer is needed if an object model exists. Otherwise, in 
the case of a simple “window on data” application type a persistence 
layer is not needed. In this situation the direct use of the data source 
connector layer will suffice.



920 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer-> Mapping
• Mapping objects to database table. Three basic approaches for 

the mapping exist:
• Use one table for an entire class hierarchy (collapsed mapping) -

each abstract and concrete-class has data in one table. A 
separated type column is needed to distinguish the different 
sub-classes. A restriction to this solution is that all properties to 
subclasses have to map to database columns, where null values 
are allowed

• Use one table per concrete class (horizontal mapping) - each 
concrete class of an entire class hierachy has all the data in its 
own table

• Use one table per class (vertical mapping) - each class of the 
entire hierarchy has data in its own table



1020 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer-> Mapping

One table for an entire class hierarchy

One table per concrete class One table per class



1120 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer-> Mapping

HighLowMediumSupport for 
polymorphism

Medium/FastFastFastSpeed of data 
access

LowHighVery highCoupling

Medium/SimpleSimpleSimpleEase of data 
access

DifficultMediumSimpleEase of 
implementation

Medium/DifficultMediumSimpleAd-hoc reporting

Use one table per 
class

Use one table per 
concrete class 

Use one table for 
an entire class 
hierarchy

Factors to 
Consider



1220 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer-> Mapping
• We recommend the following rules of thumb:

– If possible, do not combine different mapping approaches. 
The result of a combination is the compexity of the DB 
operations 

– Your preferred basic mapping strategy is dependent on the 
object operations. If you access only concrete classes from 
your application and you are interested in avoiding a lot of 
unnecessary data space in your table then use the "Use one 
table per concrete class" strategy.

– The "Use one table per class" approach is usually not 
recommendable because 

• it takes longer to read and write data since you need to 
access multiple tables

• the resulting data model is often not accepted by the 
responsible enterprise data modelling group



1320 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer-> Editing and 
Writing Objects with Minimal Update
In general, a persistence layer should keep track of all persistent 

objects that have a changed state, and should make sure that 
they are all written back to the database. The problem is how to
notify that an object has changed and needs to be saved to the 
database? The following solutions are possible:

– If you don’t keep track of what has changed, you have to 
delete everything that was in the collection and then re-write 
everything.

– Keep track of what has changed and determine the minimum 
that has to be written.

– Can make copies of the objects. 
– Mark attributes dirty as they are changed



1420 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer-> Editing and 
Writing Objects with Minimal Update
In order to select the most appropriate solution for your need consider the 

following common observations: 
• Most objects that are read never get modified.
• It is a waste of time to save unchanged objects.
• Developers often forget to save an object when it changes. 
• If a write to the database is made every time an object changes, then another 

write or rollback would be required for cancellation requests by the user.
• Complex objects might only have one of their components changed, thus not 

requiring a complete write of all values to the database.
• Writing back objects that have not changed can make it hard to audit who 

actually last changed the object.

We recommend the solution with dirty markers. It reduces the database 
operations drastically if most of the objects read are never modified. To realise 
this solution the implementation of the "Dirty marker" pattern is useful, see 
Dirty Marker Strategy. 



1520 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer-> Storage Order
into the database
Storage Order into the database

The serialisation of object nets onto databases can, however, run into problems 
with referential integrity. Referential integrity is used to specify the logical 
requirement of the existence of a row before relationships can be made to it; 
and for related rows to be deleted (or re-related) before the target row can be 
deleted. This requires some technique onto the persistence layer to correctly 
arrange the storage into the database in order that the dependencies between 
the rows are maintained correctly. To arrange the objects of an object net 
correctly, the persistence layer often compares the objects in pairs. This brute 
force approach for ordering has a complexity of O(n*n), if n is the number of 
involved objects. This approach works well, if the object nets are small but it is 
a bottleneck if processing of large object nets is necessary. More intelligent 
algorithms are required. One approach is to use the knowledge of the 
mapping information to avoid the comparison of pairs and therefore reduce the 
complexity to O(n). The knowledge of how to do this is the intellectual property 
of persistence framework vendors



1620 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer-> 
Locking Mechanism
The persistence layer must allow multiple users to work on the 

same database, and protect data against being overwritten 
unknowingly. There are two main approaches to the problem

– Pessimistic Locking
– Optimistic Locking

• Pessimistic Locking
– is used to process a piece of data which is read and update in 

the same transaction. After the read of data the rows are 
locked until a commit or rollback occurred. 

– Lock escalation on database is possible. Example DB2: If the 
numbers of locked rows increase a fixed level - DB2 is using 
page locking instead of row locking. The result is that all 
concurrent clients using the locked pages are blocked and 
can not execute any CRUD operations.



1720 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer-> Locking Mechanism
• Optimistic Locking

– is used to guarantee that data is not changed by other transactions 
when clients are updating information based on data that was read 
in a previous transaction. It is used in typical client/server 
applications when a user needs some time to process a piece of 
data. 

– Basically when an object is updated, if the version field has not 
changed since reading then the update is successful.

– Usually the locking field is a timestamp. Other approaches are 
version number or hash values. 

– Set the new value and add the version field value to the where 
clause. 

– The query to the modify-statement must be adapted to the locking 
field in the where clause

– Version numbering is an additional piece of software that works in 
the persistence layer and has in most cases influence into the data 
model (locking field)

– transaction may be failed because of concurrency access
– long term transactions usually done in dialog oriented applications



1820 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer-> 
Locking Mechanism
• Recommendations: 

– The use of an optimistic locking strategy is recommended in 
most client/server applications under the assumption that the 
data working sets of the different clients are disjoint. 

– In the case of batch processing, the pessimistic strategy 
seems better because dirty reads in so called "long term 
transactions" have to be avoided. A typical scenario are 
migration processes, e.g. the migration of contracts to a 
newer version.



1920 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer-> Object identifiers
• Since every object is unique in any object-oriented system, it is 

important to create unique identifiers for new objects. These unique 
identifiers can be used as primary key on a database. There exist three 
different approaches for the generation of unique identifiers:

– Universal Unique Identifiers (UUID)
– Sequence Blocks
– Stored procedures for auto generated keys

• Recommendations 
– The use of UUIDS is useful in applications which work in offline

mode and synchronise data later with a central data store. In this 
case UUIDs as primary keys is a simple way to guarantee unique 
identifiers in federated databases 

– Otherwise the use of sequence blocks or auto generated keys is 
preferred. An important restriction in the context of our service 
architecture is that business objects or domain objects created on 
the applications layer get their key value on the domain service layer

– Use only Java primitive types to map SQL primary keys to Java and 
vice versa



2020 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer-> Caching 
• Caching mechanisms are useful to reduce the number of database 

access operations and improve performance of an application.
– Once read and built, an object can be saved in a cache.
– Probably the most effective performance enhancement you will use.
– The entry in the cache should be indexed by a unique property, 

usually the primary key is used
– If a cached object is requested again, the copy in the cache is 

returned
• You may not be able to always check the cache first. From the query 

expression you need the primary key.
– For most applications, if you are querying for more than one object, 

you have caching, costs memory to go to the database.
– Cache can get stale, needs to be refreshed or purged.
– Use caching options/policies at the class level: 

• Some classes should not be cached 
• Threshold for the class caches are defined by the application



2120 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer-> Caching&Identity 
Identity support and caching are not the same thing although 

closely related because of the way they are implemented.
– Caching is for performance.
– Identity is for object integrity.
– Both must be supported to do any object application 

effectively with a relational database.
– Weak and soft references in JDK 1.2 (Java 2) available, so 

cache does not grow infinitely.



2220 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Persistence Layer->Record architectures
Users frequently desire lists of such top-level items as customers 

or products. The requirement is almost always for ID, name and 
brief summary information with read-only access; and similar 
requirements exist for reporting purposes. The basic approach to
this is not to handle it with the main persistence mechanisms; 
instead guarantee the following features:

• A separate mechanism should be provided in the persistence 
layer for read-only bulk handling. This should return data in the 
form of rows or tuples, using packed value arrays for the queried 
columns. It also needs a design for 'search criteria' and cursor
access to the returned rows. 

• The persistence layer have to support the use of database 
cursors



2320 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Decoupling Business Logic and Persistence
For developing components, which implement non-trivial business 

logic, a good strategy for tackling complexity and improving 
maintainability is to design and implement a domain model, 
which is an object model of the application's problem domain. 
The domain model needs a persistence mechanism to retrieve 
and store data from databases. 



2420 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Decoupling Business Logic and Persistence
Each application has to provide a persistence layer if an object

model exists. Otherwise, in the case of a simple “window on 
data” application type a persistence layer is not needed.

There are many choices for implementing the persistence layer in a 
J2EE application. Important choices that we'll consider in this 
chapter include:

– Data Access Object Pattern (DAO)
– O/R Mapping Frameworks, usually third-party persistence 

frameworks such as Object Frontier

http://java.sun.com/blueprints/patterns/DAO.html
http://java.sun.com/blueprints/patterns/DAO.html


2520 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Decoupling Business Logic and
Persistence -> DAO
The Data Access Object (DAO) pattern is used to: 
• Isolate data access from the underlying data store, like RDBMS or 

LDAP
• Decouple the client interface from underlying data access mechanics, 

e.g. connection pooling

Advantages and Drawbacks 
+ It is a lightweight approach: it uses ordinary Java interfaces, rather 

than special infrastructure such as that associated with entity 
beans

+ Enables easier migration because it is data source independent: A 
layer of DAOs makes it easier for an application to migrate to a 
different database implementation. The business objects have no 
knowledge of the underlying data implementation. Thus, the 
migration involves changes only to the DAO layer. 

+ Encapsulates proprietary APIs which are often used to improve 
performance



2620 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Decoupling Business Logic and
Persistence -> DAO
Advantages and Drawbacks ….

+ Centralises all data access into a single layer: Because all data access 
operations are now delegated to the DAOs, the separate data access 
layer can be viewed as the layer that can isolate the rest of the 
application from the data access implementation. This centralisation 
makes the application easier to maintain and manage.

- Adds an extra layer to architecture: The DAOs create an additional layer 
of objects between the data client and the data source that need to be 
designed and implemented to leverage the benefits of this pattern. But 
the benefit realised by choosing this approach pays off for the additional 
effort. 

- Typically the DAO layer is realised by the application. This has drawbacks 
as well as advantages. A major drawback is the amount of time for 
implementation. On the other hand, it is possible to build high performing 
data access layers but only if a fundamental data base knowledge is 
available- otherwise it is a high risk.



2720 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Decoupling Business Logic and
Persistence -> O/R Mapping Frameworks
The most common features of O/R mapping tools:

• Generate SQL-Statements, derived from the mapping metadata
• Resolve circular identities, i.e., 

account == account.getCustomer().getAccount()

• Caching data in the object layer delivers excellent performance because 
RDBM access is reduced

• Serialisation of object nets onto databases, see Storage Order into the 
Database 

• Support for optimistic and pessimistic locking
• Support O/R mapping with GUI-Tools
• Support one-to-one, one-to-many and many-to-many relations
• Support managed relations, for example cascading delete operations
• Support composite primary keys 
• UI tool for mapping
• Importing and creating relational schema and table



2820 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Decoupling Business Logic and
Persistence -> O/R Mapping Frameworks
Advantages and Drawbacks

+ O/R mapping provides a transparent persistence layer for handling the 
mapping of inheritance and relationships.

+ O/R mapping provides the binding to the low-level data access code. This 
reduces the development time.

+ Generates SQL-Code: After changes in the data model only the mapping 
metadata have to be changed to generate the appropriate SQL-Code.

+ The most O/R mapping solutions support additional freatures like: locking 
mechanism, cache strategies 

- Applications may become business critical if the dependency degree of 
proprietary O/R solutions is high

- If data modelling is driven from an OO-perspective, it is possible that it 
results in a non-performing database schema, which is useless for other 
processes.

- Showstopper for projects due to an non-performing O/R Mapping solution 
caused by a product or inadequate usage

- Intensive training is necessary in order to achieve the O/R mapping skills.



2920 September 2005 Copyright © 2005 Winterthur Insurance. All rights reserved.

Object Persistence Design Guidelines


	Object Persistence Design Guidelines
	Motivation
	Contents
	Common Design Principles
	Datasource Connector (I/III)
	Datasource Connector (II/III)
	Datasource Connector (III/III)
	Persistence Layer
	Persistence Layer-> Mapping
	Persistence Layer-> Mapping
	Persistence Layer-> Mapping
	Persistence Layer-> Mapping
	Persistence Layer-> Editing and Writing Objects with Minimal Update
	Persistence Layer-> Editing and Writing Objects with Minimal Update
	Persistence Layer-> Storage Orderinto the database
	Persistence Layer-> Locking Mechanism
	Persistence Layer-> Locking Mechanism
	Persistence Layer-> Locking Mechanism
	Persistence Layer-> Object identifiers
	Persistence Layer-> Caching
	Persistence Layer-> Caching&Identity
	Persistence Layer->Record architectures
	Decoupling Business Logic and Persistence
	Decoupling Business Logic and Persistence
	Decoupling Business Logic andPersistence -> DAO
	Decoupling Business Logic andPersistence -> DAO
	Decoupling Business Logic andPersistence -> O/R Mapping Frameworks
	Decoupling Business Logic andPersistence -> O/R Mapping Frameworks
	Object Persistence Design Guidelines

