
Impedance Mismatch is not an “Objects vs. Relations” Problem.
(DRAFT)

Evgeniy Grigoriev
Grigoriev.E@gmail.com

The problem of impedance mismatch between applications written in OO languages and
relational DB is not a problem of discrepancy between object-oriented and relational
approaches themselves. Its real causes can be found in usual implementation of the ОО
approach. Direct comparison of the two approaches cannot be used as a base for the
conclusion that they are discrepant or mismatched. Experimental proof of the absence of
contradiction between the object-oriented paradigm and the relational data model is also
presented in the paper.

" -Look, your worship, - said Sancho, - what we see there are not giants
but windmills, and what seem to be their arms are the sails…"

Miguel de Cervantes, Don Quixote

In physics, the term “impedance mismatch” (IM) may be found in fields dedicated to wave
processes, e.g., in acoustics or in electrodynamics. It is used to denote an effect that appears
when a wave is transferred from one medium to another [IMP]. If the impedances of the two
media are different ("mismatching"), the wave energy will be reflected or absorbed, so it is
difficult for the wave to cross the border between the media.

A similar effect occurs when one attempts to organise the data exchange between programs
written with object-oriented (OO) language and relational (R) DBMS, which is referred to as
“object-relational impedance mismatch” [Copeland, Ambler]. Existing difficulties are usually
explained with the discrepancy in general properties of the object program and relational DB.
For example, in [Ambler1], it is defined as, “The difference resulting from the fact that relational
theory is based on relationships between tuples (records) that are queried, where as the object
paradigm is based on relationships between objects that are traversed“.

Unfortunately, the difficulties of data exchange between object applications and relational DBs
are often presented as a result of a conceptual discrepancy between object-oriented and
relational approaches themselves (e.g., [Shusman]). Resolving this vexatious fact is the primary
motive of this paper. The first section of the paper shows that real causes of the problems can
be found in habitual implementation of the ОО approach. The Second part discusses why a
direct comparison of the two approaches cannot be used as a base for the conclusion that they
are discrepant or mismatched. In the third part, experimental proof of the absence of
contradiction between the object-oriented paradigm and relational data model is presented.

Let us first define some common terms. A data system will be used to denote a device which
implements a set of types and operations on variables of these types and on values of the types
which are stored in the variables. All of the operations are performed by using special
commands. All interaction with the data system is defined as a set of input commands and
format of output data. As a result, any data system can be considered as a “black box”. Its
internals are not important for ascertaining how it can be used; they are hidden from users.

The data system is programmable when it allows command sequences (programs) to be created,
stored and executed. We will call such data systems machines. During program execution, a
machine can receive some data on input and form some data on output.

There is only one system language for each machine. However, it is possible to use many other
languages—assuming that they can be translated into the system language. A translator is

special program which receives source program text on input; on output, it translates said
program into the system language.

It is possible to write a program which emulates another data system (referred to as a virtual
one). Such a program (emulator) receives commands from the emulated data system on input
and interprets these commands. On output, it forms data according to the format set for the
emulated data system. In this way, the emulator simulates a functionality of a “black box”, as
described above.

Between Objects and Relations.

“Everything should be made as simple as possible, but not simpler.”
Ascribed to Albert Einstein

In papers dedicated to IM, a situation is usually presented in the way that programs written in
OO language interact with relational DBs directly and “as is”. However, such description of the
situation is too simple and hides some important points which show that problems of
interactions between object program and relational DB are not tied to problems of conceptual
discrepancy between object-oriented and relational approaches; it can be easily explained with
some features of their implementation.

Let us define which data systems participate in data exchange between programs written in OO
language and relational DB.

Relational DB fits under the definition of a data system as given in the abovementioned. It
implements a set of types which includes some scalar types and complex type “relations”, the
latter of which maintains the essence of the relational system. Operations on variables and
values of these types implemented as a set of commands which forms relational language. The
de-facto standard of such language today is SQL (well-known for its conformity to the relational
data model [Date]). Output data of relational systems is presented in the form of relational
values (in SQL - table values). Let us note also that modern relational DBMSs allow command
sequences to be created, stored and executed, so they can be considered as a programmable
data system.

The data system which executes a program written in OO language is the target machine. It can
be a real computer or a virtual machine (e.g., JVM for Java or CLR for C#). Let us note that the
architecture of these target machines is generally defined by von-Neumann principles, and thus
program data and code are stored in addressable linear memory (further ALM).

It is a very important point that subjects of programming for the vast majority of program
languages (inc. OO ones) are ALM-machines. This fact is so common that it goes unchallenged
and is not considered a focus in the field, likely contributing to the reason why IM problems
seem to be global and conceptual. Modern program languages and programming systems are
the result of the evolution of programming tools for ALM-machines. The architecture of these
machines always has an influence on both languages and on programs, inc. the process of
interaction between object programs and relational DB.

A key point is the fact that a program written in OO language is executed after translation
(compilation) in a program written in the target machine language. Therefore, when discussing
the process of interaction between object programs and relational DBs, it is necessary to
consider two stages:

• In the first stage, the source program is translated into the target machine program. This
includes mapping complex class structures into structures and hints available in
addressable linear memory;

• In the second stage, the program is executed. This includes data exchange between
addressable linear memory and relational DB.

Both of these separate stages have features which form the IM effect.

Noted in [Neward], unidirectional associations between objects can be regarded as an example
of influence of ALM-machines on program languages. This feature is very easily explained by the
fact that unidirectional address pointers are the only possible ways to link memory areas in
ALM. Consequently, this feature and related problem are not defined by the OO approach itself;
it is just a result of the influence of target ALM machines. By the way, the term “navigation”,
used to describe a mechanism of data access in the OO system, has the same source (we will
return to this issue later).

Another feature of ALM machines is that both associations between objects and internal
structures of the objects are mapped into a single address space. This feature becomes critical
when not an object program, but a system consisting of a set of persistent modifiable objects is
discussed. A memory area allocated to an object can be limited by the areas allocated to other
objects. Any attempts to change object structure or, sometimes, to change object value,
requires reallocation of the object data in the memory. This situation is worsened by the
unidirectionality of address pointers because there is no easy way to change all pointers
referencing reallocated data if such pointers exist. As a result, addresses cannot be used as OIDs
of persistent objects. An additional consequence is the need for total program recompilation
after only one class is changed in the source program. Due to the abovementioned,
implementation of persistent modifiable objects in ALM-machines is a very complex task (even if
the addressable linear memory itself is persistent).

Data exchange between program and relational DB is performed by means of relational
command. For correct value exchange, it is necessary to bind addresses of variables in ALM and
names used to describe relational structures. Due to the necessity for meaningful ad-hoc
querying, it is desirable to use in relational DB the same names which were used in the source
program as the names of the variables.

If data exchange is programmed manually, a programmer does the following:

• supposes that all necessary relational structures exist (or creates them by hand);
• everywhere, where it is necessary, uses expressions, in which names of these structures

are given in variables or parameters of string type.
During translation, these names are placed in ALM without changes. Names of program
variables are translated into addresses. Thus, in this case, all information used to organise the
data exchange is provided by programmers, and translators perform typical source code
processing.

Actions necessary for automation of data exchange are per se opposite to the ones performed in
the first stage (translation). During program translation, names are transformed into addresses.
During program execution, these addresses have to be linked with names again. Therefore, total
mapping from objects to relations can be described with the following schema:

• First stage. “Names ==>(translation) ==> Addresses”
• Second stage: “Addresses ß(data exchange)à Names”.

Difficulties in the second stage stem from the fact that there are no names in ALM-machines.
Addresses are only information which is necessary to access data in ALM in the second stage. All
names which existed in the source program have been translated into addresses in the first
stage in the case of usual translation.

The only source of the names is the source program; thus, the next steps must be performed
during translation:

• Data structure of source program must be analysed to find names and to create
description of relational structures;

• Source program code must be analysed to find all entries of the names;
• When data exchange actions have to be performed must be determined;
• Target code must be modified.

And much more complex action have to be performed if suppose that complex object can be
modified arbitrary during their existence. All these actions allow different interpretations, are
very complex for realisation and are poorly controlled by programmers.

As we can see, all the denoted problems are tied up with addressable linear memory, which is a
habitual intermediary between object and relations. On the one hand, this memory is not
suitable for implementation of persistent modifiable objects. On other hand, it takes significant
efforts to automate data exchange between the program and relational DB. It is a real reason for
many difficulties which form the IM effect, and this reason is not tied to conceptual
discrepancies between object-oriented and relational approaches.

Different Properties.

“- If there’s no meaning in it, – said the King, – that saves a world
of trouble, you know, as we needn’t try to find any.”

Lewis Carrol, Alice’s Adventures in Wonderland.

There is evident analogy between class creation in the OO program and the data schema
definition in relational DB. In both cases, similar sets of base scalar types exist and similar syntax
is used to construct complex class structures and relational schemes. Due this similarity, OO
programming systems and relational DB are apprehended as similar systems allowing direct
comparison.

The question is that although they can be compared and it can be determined that they have
different properties, is it invariable that systems with different properties are mismatched?

As previously mentioned, programs implementing the same functionality can be written in
different program languages. On other hand, very different programs can be written in the one
program language. These remarks are true for programs emulating different data systems. It is
clear that the following is true:

• The ability to use different program languages to program some machines is orthogonal
to the ability to create emulators of different data systems using this machine;

• The set of commands on input and data formats on output of the emulated data system
has nothing in common with the program language used to write the emulating
program.

The most important feature in the object-oriented programming system is the capability of
creating arbitrary data types by using a restricted set of base types. Well-known principles are
used for this [Booch], which are the essence of the object-oriented approach. Let us note that
these principles do not fix the result (the object-oriented approach allows any types to be
created). These principles are applicable to a process of type defining. They are used to
transition from some restricted set of base types to any complex types. If we consider the data
system as a black box, then the OO approach offers principles for constructing the internals of
any black boxes.

On the contrary, all properties of relational systems are reached by using the only type
“relation”, and by operations and constraints applicable to this type. These properties are
external ones which define special kinds of black boxes (irrelatively to its internals).

Thus, properties of relational data systems have nothing in common with properties of object-
oriented programming systems. In spite of their surface similarity, these systems are orthogonal.
Now it is possible to show where there is a difference between definitions of a physical
impedance mismatch and an “object-relational” one and why the currently used analogy is not
correct.

In physics, impedance mismatch refers to different degrees of the same property, called
impedance of medium. This is quantity comparison, allowing (mis)matching of compared media
to be judged exactly. With this, it is implied that these media are similar and comparable.

A conclusion about conceptual mismatching between object-oriented and relational approaches
is usually given after comparison of different sets of their different properties. Is such
comparison adequate? As an example, try to compare a car and a road. It is possible to find a lot
of different properties in such a comparison, e.g., max. speed, mileage, number of wheels, type
of surface, etc. Some properties can be the same, e.g. length, color. It is also possible that the
values of some properties can be same, e.g., color can be gray. However, with any result, it is
clear that we are trying to compare incomparable things and such comparison is meaningless.

In the same way, direct comparison of properties of object-oriented and relational systems is
meaningless as well because they are orthogonal. Such comparison cannot be used as a basis for
the conclusion that they are principally discrepant or conceptually mismatched.

Experimental Proof.

 “…Fiction is obliged to stick to possibilities; Truth isn't.”
Mark Twain, Following the Equator.

The orthogonality of properties of OO programming systems and relational data systems means
that they can be united in a single system. This fact is evidently demonstrated by the
experimental RxO-system [Grigoriev1]. Here are some of its features which are relevant to our
topic of discussion.

RxO-system uses object-oriented translation for a relational machine.

The RxO system consists of two parts: a relational machine and an object-oriented translator.

As asserted earlier, modern relational systems are programmable data systems. Command
sequences on data presented as a set of relational values can be created, stored and executed.
They can be considered as machines equipped with associative memory. There are different
kinds of associations in this memory, namely the following:

• Tuples are associations of scalars;
• Each of the scalar associates with an attribute name. Unique attributes form a relation

header. The relation body is a set of tuples, each of which complies with the header;
• Each of the relations associates with a unique name;
• A foreign key can be considered as an association between tuples of different relations.

Furthermore, relational machines have other properties which distinguish them from ALM
machines, namely the following:

• Formal foundation (relational data model)
• Ability to manipulate with groups of values by means of set operations
• Persistent memory.

The RxO-system uses a relational machine as the only device which unites both abilities to
process data and to store the data permanently.

The second part of the RxO-system is the translator. All commands of source nonprocedural
object-oriented language are translated into commands of the target relational machine, which
are executed immediately (it is not a compilation; in contrary, this process looks like an
interpretation for user). According to relational memory organization, the schema “Names ==>
(translation)==>Names” is implemented in the translator; names of relational structures are
directly formed from names used to describe object structures. Then, permanent name tables
are used, which can be considered as part of the system catalogue.

Because a relational machine combines the abilities to process and store data permanently,
there are not many problems, as described by in [Neward] (inc. the partial-object problem, the
load-time paradox, the questions concerning data caching and transactional integrity, the
schema-ownership problem and the dual-scheme problem), with the RxO system. These
problems are common interaction problems of different data systems irrespective of the data
organisation inside the systems. They are not a result of conceptual discrepancy between
object-oriented and relational approaches exactly.

RxO system allows a problem domain be described as a set of complex objects of different
types.

In traditional systems, complex object structures are constructed as a set of variables of base
types, i.e., types implemented in a target machine [Pratt]. This principle is used in the RxO
system. Object variables are constructed as a set of named components, which are relational
variables. If arity and/or cardinality of such components are fixed to unity, reduced definition
can be used; then components can be defined as scalars, tuples sets and relations. Object
behaviour is defined by a set of methods.

All components and methods together form object interface. A class is a set of objects that have
the same interface; the interface is described in the class specification.

CREATE CLASS BANKS
(Name STRING //component-scalar
);

CREATE CLASS CONTRACTORS
(Name STRING,
 Bank BANKS, // component-reference
 ID STRING
)KEY(ID); //class keys are non-obligatory

CREATE CLASS GOODS
(Art STRING;
 Turnover SET OF //component-relation
 (DocN STRING,
 Cntr CONTRACTORS, //reference attribute
 Pieces INTEGER
)KEY(DocN), //component key
 Pieces INTEGER //...remain on stock
)KEY(Art); //class key

CREATE CLASS DOCS
(DocN STRING,
 Date DATETIME,
 Comment STRING,
 Cntr CONTRACTORS,
 Items SET OF
 (Art STRING,
 Pieces INTEGER
)KEY(Art),
 DoShip(inDate DATETIME) //method
)KEY(DocN)
REFERENCE Items(.Art)
 ON GOODS(.Art) //foreign key

Multiple inheritance is allowed; child class specification is a union of specifications of parent
classes and own components and methods.

CREATE CLASS VALUERECORDS
(...
 Amount FLOAT,...
)...

CREATE CLASS SALES EXTEND DOCS, VALUERECORDS // two parent classes
(SaledItems SET OF //own component-relation
 (Art STRING,
 Price FLOAT,
 Pieces INTEGER
)KEY(Art, Price)
)

Class specification is distinguished from class implementation. Each component and method is
implemented separately. Class components can be implemented both as stored and as
calculated (i.e., as real and as virtual) relations. In this way, data persistence is a property
encapsulated in the class components, and it is defined in implementation.

ALTER DOCS REALIZE DocN, Date, Comment, Cntr, Items AS
 STORED;

ALTER GOODS REALIZE Turnover AS
SELECT #g.DocN,
 #g.Cntr,
 SUM(#g.Items.Pieces) AS Pieces
FROM DOCS #g
WHERE #g.Items.Art = Art
GROUP BY
 #g.DocN,
 #g.Cntr;

ALTER GOODS REALIZE Pieces AS
BEGIN
 DECLARE tmpPieces INTEGER;
 tmpPieces :=
 SELECT SUM(#g.Items.Pieces) AS Pieces
 FROM DOCS #g
 WHERE #g.Items.Art = Art;
 IF(tmpPieces IS NULL)
 THEN tmpPieces := 0;
 RETURN tmpPieces;
END

Methods are implemented by means of procedures.

ALTER DOCS REALIZE DoShip(inDate DATETIME) AS
BEGIN
 IF(Date IS NULL) THEN
 BEGIN
 Date := inDate;
 Comment := "Shipped!";
 END
END

All implementations can be redefined during inheritance.

ALTER SALES REALIZE Items AS // in class SALES component “Items” is...
 SELECT Art, SUM(Pieces) FROM SaleItems GROUP BY Art; //... calculated

Unique objects are created with instruction NEW and destroyed with instruction DESTROY;
these instructions can be used both as separate commands and in procedural code.

NEW CONTRACTORS WITH SET
 .Name:="TheShop",
 .Bank := (NEW BANKS WITH SET
 .Name:="TheBank"),
 .ID:="CoID001";

Given example shows that source language of RxO system is similar to traditional OO languages
in their abilities to describe complex objects. The RxO system implements general object-
oriented principles in corpore.

The RxO system presents all data as a set of relations keeping semantics of the complex data.

This point can seem contradictory (especially for persons who are deep inside the problem of
IM). But let us look at traditional OO translators. They allow a problem domain to be described
as a set of complex objects of different types. However, they maintain the option to use values
of base types to manipulate with the objects. Whenever values of object attributes are obtained
or set and whenever methods take parameters and return values, the base scalar values can be
used (this circumstance conveys the fact that, all data access operations performed by a target
machine can use values of types implemented in the machine only, regardless of complexity of
data structures possible in the source language). Thus, values of complex objects can be
accessed as a set of values of base scalar types.

In the case of a relational machine, the only base type is the type “relation”. Properties of this
type allow the RxO system to unite (by UNION operation) or/and to join (by JOIN operation)
values describing different objects into one relation in very different ways.

A key point allowing semantics of complex structures to be kept in such relations is the fact that,
formal models do not restrict the complexity of names used to denote values. The only
requirement is name uniqueness. This idea is demonstrated in the next example (which is also
very possible in traditional OO translators). From the point of view of formal mathematics, these
two expressions
X + Y
CurrentOrder.items.Count() + History.OrdersDetails.TotalCounts
are equal. In both cases, they mean the addition of two values. Complex names used to denote
values in the second case are meaningful for users. Moreover, they are important for translators
because they are translated into data access operations performed by the target machine to
obtain the summed values.

The RxO system realises this idea for relations (formal structures) by means of the base
principle, which defines how names entered in class specification can be used in data access
commands of the source language.
Any non-terminal path can be considered as a name of a relation; any scalar post-paths of this
path can be considered as names of attributes of this relation.
Relations formed according to this principle are named O-views (object views). For example, the
next name hierarchy is defined by class GOODS specification considering used references.

GOODS Art
 Turnover DocN (in CONTRACTORS)
 Pieces Cntr Name (in BANKS)
 Pieces Bank Name
 ID

In this hierarchy, the path
GOODS.Turnover.Cntr
is defined amongst others. This path allows the post-paths
.Name,
and
.Bank.Name
amongst others.

Thus, according to the base principle, the relation

GOODS.Turnover.Cntr // name of relation
 (..., .Name, .Bank.Name, ...) // attributes of relation

is defined in the system, which can be used in data access command, e.g.

SELECT .Name, .Bank.Name FROM GOODS.Turnover.Cntr

From the viewpoint of the formal relational data model used, complex names are equal to
names used to denote abstract relation R(a1, a2…). These complex names are meaningful for
users. Furthermore, they are important for translators because they are translated into data
access operations performed by the relational target machine to obtain the required value.

In the case of a relational machine, all the data access operations are relational ones. When the
RxO system executes data access command of the source language, it translates all complex
names used to denote O-view into relational operations, which is executed by the target
machine to calculate the O-view value from data stored in relational memory. This process is
described in [Grigoriev2] in detail.

Complex O-view names can include object selection expressions. These expressions are
translated into some selection operations executed by the target machine when O-views are
calculated. O-views with such expressions contain data of objects satisfying special criteria. E.g.,
the expression

GOODS[.Art = “...”].Turnover.Cntr

can be considered as a name of a relation containing data on special goods.

The O-view name can begin with any non-terminal expression defined in any current context.
For example, in the context of class DOCS, a name Cntr is defined; then, in this context, (e.g. in
the class method) the following relations can be used

Cntr.Bank // имя отношения

 (..., .Name, ...) // атрибуты отношения

In spite of traditional reference syntax used to define associations between objects, the
associations allow reversed data access. E.g. the O-view

GOODS[.Art = “...”].Turnover.Cntr
 (..., .Name, .Bank.Name, ...)

contains data of class CONTRACTORS objects referenced by class GOODS objects that satisfy a
condition. On the contrary, the O-view

GOODS[.Turnover.Cntr.Name = “...”]
 (..., .Art, .Pieces, ...)

contains data of class GOODS objects referencing to some class CONTRACTORS objects that
satisfy a condition. In this way, reference structures can be accessed in both directions in the
RxO system.

Thus, there is no problem of object-relational mapping in the RxO system. The system allows
objects to be presented into relations (O-view) according to the needs of the user at any time.
Because the relations keep semantics of complex structures, this transition from object
descriptions to relational presentations is imperceptible for users. As a particular result, O-view
allows object data to be accessed by means of relational ad-hoc queries.

All operations on data are set operations in the RxO system (access to a single object is
considered as a particular case).

Any operation on a set of objects is executed with neither explicit (described by source
language) nor implicit (described by target machine language) iterators.

As it is shown in [Grigoriev2], any operations applicable to the object of a class (inc. class
methods) can be translated into a procedure applicable to data in the memory of the relational
target machine; this single execution of the procedure is equal to executions of source
operations for each of objects of any given subset of the class.

E.g., execution of method DoShip(...)for a group of class DOCS objects which satisfy the
condition

EXEC DOCS[.Date >= ‘...’].DoShip(...)

is performed in the relational machine by means of a single execution of procedures, which are
the result of translation of the source method. This procedure is a sequence of set operations on
data stored in relational memory (this sequence is defined by the source method). Single
execution of the procedure changes the system state as if the source method, have been
performed for each of the objects.

Objects are accessible both as elements of class (used in nonprocedural commands) and by
references (used in paths or inside a code of procedures). All commands applicable to a single
object are applicable to a set of objects. For example, some objects can be destroyed by
command

DESTROY CONTRAGENTS[.ID:="CoID001"]

where the object is specified as an element of class by means of object selection expression. A
set of objects can be destroyed simultaneously in same way.

Lastly, O-views allow the data of a set of objects to be accessed in different ways as discussed
previously.

Thus, the RxO system uses a way of data access which principally differs from the one used in
ALM machines and implied in traditional OO programming systems. Access to objects does not
mean traversing. Complex hierarchical expression does not mean navigating through references
(as step-by-step dereferencing process). All of these machineries are manifestations of features
of ALM machines, a result of influence of their architecture, but not properties of the OO
approach itself. Therefore, IM is a result of the difference between ALM machines which are
target machines for traditional OO languages and relational data systems.

Conclusion.

“Old habits die hard.”
Well-known proverb.

An IM problem between applications written in OO languages and relational DB is topical still.
However, it is not a problem of discrepancy between object-oriented and relational approaches
themselves. A stable belief that this discrepancy exists is itself a problem because it obstructs
further investigation into possible approaches. It is necessary to distinguish a general question
on principal co-use of objects and relations from the prevalent but particular problem of
impedance mismatch between their habitual implementations.

References:

[IMP] Wikipedia: Impedance matching, http://en.wikipedia.org/wiki/Impedance_matching

[Copeland] Copeland, G. and Maier, D., "Making Smalltalk a Database System," Proc. 1984 ACM-SIGMOD Conference
on Management of Data, Boston, Mass. (1984)

[Ambler1] Ambler, S.W., “Building object applications that work.” Cambridge University Press (1998)

[Ambler2] Ambler, S.,“The Object-Relational Impedance Mismatch”
http://www.agiledata.org/essays/impedanceMismatch.html

[Neward] Neward, T., “The Vietnam of Computer Science“
http://odbms.org/download/031.01%20Neward%20The%20Vietnam%20of%20Computer%20Science%20June%2020
06.PDF

[Shusman] Shusman,D.,”Oscillating Between Objects and Relational:The Impedance Mismatch”
http://www.odbms.org/Download/023.01%20Shusman%20The%20Impedance%20Mismatch%202002.PDF

[Pratt&Zelkowitz] Pratt,T.W. and Zelkovitz,M.V., “Programming Languages: Design and Implementation.” London:
Prentice Hall, Inc. (2001)

[Date&Darwen] Date, C. J. and Darwen, H., “Foundation for Object/Relational Databases – The Third Manifesto.”
Addison Wesley (2001)

[Booch] Booch , G ., “Object-oriented Analysis and Design with Applications”. 1991 . Benjamin-Cummings
Publishing.

[Grigoriev1] Grigoriev,E., “RxO system. Simple semantic approach for representation complex objects data in table
form.” http://odbms.org/download/RxO1.pdf

[Grigoriev2] Grigoriev,E., “The logic of group operations on complex objects in RxO-system.”
http://odbms.org/download/RxOlogic1.pdf
2012’Aug, Moscow RF

http://en.wikipedia.org/wiki/Impedance_matching
http://www.agiledata.org/essays/impedanceMismatch.html
http://odbms.org/download/031.01 Neward The Vietnam of Computer Science June 2006.PDF
http://odbms.org/download/031.01 Neward The Vietnam of Computer Science June 2006.PDF
http://www.odbms.org/Download/023.01 Shusman The Impedance Mismatch 2002.PDF
http://odbms.org/download/RxO1.pdf
http://odbms.org/download/RxOlogic1.pdf

