
The Hardest Problems in Data 
Management
W H I T E  PA P E R



The Hardest Problems in Data Management

W H I T E  PA P E R  /  2

Table of Contents

The Hardest Problem in Data Management. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .3

What’s So Hard About This? . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .3

Eventually Consistent Solutions Are Not Always Viable. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .3

Our Solution—The EDF. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .4

	 Mining the Gap in CAP 	 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5

	Having It All (Just Not at Once) 	 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5 

Amortizing CAP for High Performance 	 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6

Exploiting Parallelism	 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6

	 Active Caching: Automatic, Reliable Push Notifications for Event-Driven Architectures 	 .8

	 Spanning The Glob	 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .8

	 Memory-Centric Performance	 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9

Scaling Elastically. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .9

Tools, Debugging, Testing, Support. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .9

Solution Comparison Matrix. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11

Conclusion. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .12



The Hardest Problems in Data Management

W H I T E  PA P E R  /  3

The Hardest Problems in Data Management
Modern hardware trends and economics [1] combined with cloud/virtualization technology [2] are radically 
reshaping today’s data management landscape, ushering in a new era where many machine, many core, 
memory-based computing topologies can be dynamically assembled from existing IT resources and pay-as-
you-go clouds. Arguably one of the hardest problems — and consequently, most exciting opportunities — faced 
by today’s solution designers is figuring out how to leverage this on-demand hardware to build an optimal data 
management platform that can:

• Exploit memory and machine parallelism for low-latency and high scalability grow and shrink elastically with 
business demand

• Treat failures as the norm, rather than the exception, providing always-on service

• Span time zones and geography uniting remote business processes and stakeholders

• Support pull, push, transactional, and analytic based workloads increase cost-effectiveness with service 
growth

What’s So Hard
A data management platform that dynamically runs across many machines requires — as a foundation — a fast, 
scalable, fault-tolerant distributed system. It is well-known, however, that distributed systems have unavoidable 
trade-offs and notoriously complex implementation challenges [3,4]. Introduced at PODC 2000 by Eric Brewer 
[5] and formally proven by Seth Gilbert and Nancy Lynch in 2002 [6], the CAP Theorem, in particular, stipulates 
that it is impossible for a distributed system to be simultaneously: Consistent, Available, and Partition-
Tolerant. At any given time, only two of these three desirable properties can be achieved. Hence when building 
distributed systems, design trade-offs must be made.

Eventually Consistent Solutions Are Not  
Always Viable
Driven by awareness of CAP limitations, a popular design approach for scaling Web-Oriented applications 
is to anticipate that large-scale systems will inevitably encounter network partitions and to therefore relax 
consistency in order to allow services to remain highly available even as partitions occur [7]. Rather than go 
down and interrupt user service upon network outages, many Web user applications--e.g., customer shopping 
carts, e-mail search, social network queries—can tolerate stale data and adequately merge conflicts, possibly 
guided by help from end users once partitions are fixed. Several so-called eventually consistent platforms 
designed for partition-tolerance and availability—largely inspired by Amazon, Google, and Microsoft—are 
available as products, cloud-based services, or even derivative, open source community projects.

In addition to these prior art approaches by Web2.0 vendors, GemStone’s perspective on distributed system 
design is further illuminated by 25 years of experience with customers in the world of high finance. Here, in 
stark contrast to Web user-oriented applications, financial applications are highly automated and consistency 
of data is paramount. Eventually consistent solutions are not an option. Business rules do not permit relaxed 
consistency, so in variants like account trading balances must be enforced by strong transactional consistency 
semantics. In application terms, the cost of an apology [8] makes rollback too expensive, so many financial 
applications must limit workflow exposure traditionally by relying on OLTP systems with ACID guarantees.
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But just like Web 2.0 companies, financial applications also need highly available data. So in practice, financial 
institutions must “have their cake and eat it too”.

So given CAP limitations, “How is it possible to prioritize consistency and availability yet also manage service 
interruptions caused by network outages?”

The intersection between strong consistency and availability (with some assurance for partition-tolerance) 
identifies a challenging design gap in CAP-aware solution space. Eventually consistent approaches area non-
starter. Distributed databases using 2 phase commit provide transactional guarantees but only so long as all 
nodes see each other. Quorum based approaches provide consistency but block service availability during 
network partitions.

Collaboratively designed with customers over the last five years, GemStone has developed practical ways to 
mine this gap, delivering an off-the-shelf, fast, scalable, and reliable data management solution we call the 
enterprise data fabric (EDF).

OUR SOLUTION: THE EDF
Any choice of distributed system design—shared memory, shared-disk, or shared-nothing architecture—has 
inescapable CAP trade-offs with downstream implications on data correctness and concurrency. High-level 
design choices also impact throughput and latency as well as programmability models, potentially imposing 
constraints on schema flexibility and transactional semantics. Guided by distributed systems theory [9], 
industry trends in parallel/distributed databases [10], and customer experience, the EDF solution adopts 
a shared-nothing scalability architecture where data is partitioned onto nodes connected into a seamless, 
expandable, resilient fabric capable of spanning process, machine, and geographical boundaries. By simply 
connecting more machine nodes, the EDF scales data storage horizontally. Within a data partition (not to 
be confused with network partitions), data entries are key/value pairs with thread-based, read-your-writes 
[7] consistency. The isolation of data into partitions creates a service-oriented design pattern where related 
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partitions can be grouped into abstractions called service entities [11]. A service entity is deployed on a single 
machine at a time where it owns and manages a discrete collection of data — a holistic chunk of the overall 
business schema — hence, multiple data entries co-located within a service entity can be queried and updated 
transactionally, independent of data within another service entity.

Mining the Gap in CAP

From a CAP perspective, service entities enable the EDF to exploit a well-known approach to fault tolerance 
based on partial-failure modes, fault isolation, and graceful degradation of service [12]. Service entities allow 
application designers to demarcate units of survivability in the face of network faults. So rather than striving for 
complete partition-tolerance (an impossible result) when consistency and availability must be prioritized, the 
EDF implements a relaxed, weakened form of partition-tolerance that isolates the effects of network failures 
enabling the maximum number of services to remain fully consistent and available when network splits occur.

By configuring membership roles (reflecting service entity responsibilities) for each member of the distributed 
system, customers can orthogonally (in a light-weight, non-invasive, declarative manner) encode business 
semantics that give the EDF the ability to decide under what circumstances a member node can safely 
continue operating after a disruption caused by network failure. Membership roles perform application 
decomposition by encapsulating the relationship of one system member to another, expressing causal data 
dependencies, message stability rules (defining what attendant members must be reachable), loss actions 
(what to do if required roles are absent), and resumption actions (what to do when required roles rejoin). For 
example, membership roles can identify independent subnetworks in a complex workflow application. So 
long as interdependent producer and consumer activities are present after a split, reads and writes to their 
data partitions can safely continue. Rather than arbitrarily disabling an entire losing side during network splits, 
the EDF consults fine-grained knowledge of service-based role dependencies and keeps as many services 
consistently available as possible.

Have It All (Just Not at Once)

CAP requirements and data mutability requirements can evolve as data flows across space and time through 
business processes.

So all data is not equal[13]—as data is processed by separate activities in a business workflow, consistency, 
availability, and partition-tolerance requirements change. For example, in an e-commerce site, acquisition of 
shopping cart items is prioritized as a high-write availability scenario, i.e., an e-retailer wants shopping cart 
data to be highly available even at the cost of weakened consistency, lest service interruption stalls impulse 
purchases, or worse yet, ultimately forces customers to visit competitor store fronts. Once items are placed 
in the shopping cart and the order is clicked, automated order fulfillment workflows reprioritize for data 
consistency (at the cost of weakened availability) since no live customer is waiting for the next Web screen to 
appear; if an activity blocks, another segment of the automated workflow can be alternatively launched, or the 
activity can be retried. In addition to changing CAP requirements, data mutability requirements also change—
e.g., at the front end of a workflow, data may be write-intensive; whereas afterward, during bulk processing, the 
same captured data may be accessed in read-only or read-mostly fashion.

Our EDF solution exploits this changing nature of data by flexibly configuring consistency, availability, and 
partition-tolerance trade-offs, depending on where and when data is processed in application workflows:
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Thus, business can achieve all three CAP properties—but at different application locations and times.

Each logical unit of EDF data sharing, called a region, maybe individually configured for synchronous or 
asynchronous state machine replication, persistence, and stipulations for N (number of replicas), W (number of 
writers for message stability), R (number of replicas for servicing a read request).

Amortizing CAP For High Performance

In addition to tuning CAP properties, this system configurability lets designers selectively amortize the cost of 
fault-tolerance throughout an end-to-end system architecture resulting in optimal throughput and latency.

For example, Wall Street trading firms with extreme low-latency requirements for data capture can configure 
order matching systems to run completely in-memory (with synchronous, yet very fast, redundancy to another 
in-memory node) while providing disaster recovery with persistent (on-disk), asynchronous data replication 
and eventual consistency to a metropolitan area network across the river in New Jersey. To maximize 
performance for competitiveness, risks of failure are spread out and fine-tuned across the business workflow 
according to failure probability: the common failure of single machine nodes is offset by intra-datacenter, 
strongly consistent HA memory backups; while the more remote possibility of a complete data center outage 
event is off set by a weakly consistent, multi-homed, disk-resident disaster recovery backup.

Exploiting Parallelism

A design goal of the EDF is to optimize performance by exploiting parallelism and concurrency wherever and 
whenever possible. For example, the EDF exploits many-core thread-level parallelism by managing entries 
in highly concurrent data structures and utilizing service pools for computation and network I/O. The EDF 
employs partitioned and pipelined parallelism to perform distributed queries, aggregation, and internal 
distribution operations on behalf of user applications. With data partitioned among multiple nodes, a query 
can be replicated to many independent processors each returning on a small part of the overall query. Similarly, 
business data schemas and workloads frequently consist of multi-step operations on uniform (e.g., sequential 
time series) data streams. These operations can be composed into parallel dataflow graphs where the output of 
one operator is streamed into the input of another; hence multiple operators can work continuously in  
task pipelines.
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External applications can use the Function Service API to create Map/Reduce programs that run in parallel over 
data in the EDF. Rather than data flowing from many nodes into a single client application, control (Runnable 
functions) logic flows from the application to many machines in the EDF. This dramatically reduces process 
execution time as well as network bandwidth.

To further assist parallel function execution, data partitions can be tuned dynamically by all applications using 
the Partition Resolver API. By default, the EDF uses a hashing policy where a data entry key is hashed to 
compute a random bucket mapped to a member node. The physical location of the key-value pair is virtualized 
from the application. Custom partitioning, on the other hand, enables applications to co-locate related data 
entries together to form service entities. For example, a financial risk analytics application can co-locate all 
trades, risk sensitivities, and reference data associated with a single instrument in the same region. Using the 
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Function Service, control flow can then be directly routed to specific nodes holding particular data sets; hence 
queries can be localized and then aggregated in parallel increasing the speed of execution when compared to a 
distributed query.

Server machines can also be organized into server groups — aligned on service entity functionality — to provide 
concurrent access to shared data on behalf of client application nodes.

Active Caching: Automatic, Reliable Push Notifications for Event-Driven Architectures

EDF client applications can then create active caches to eliminate latency. If application requests do not find 
data in the client cache, the data is automatically fetched from the EDF by the server. As modifications to 
shared regions occur, these updates are automatically pushed to clients where applications receive real-time 
event notifications. Likewise, modifications initiated by a client application are sent to the server and then 
pushed to other applications listening for region updates.

Caching eliminates the need for polling since updates are pushed to client applications as real-time events

In addition to subscribing to all events on a data region, clients can subscribe to events using key-based regular 
expressions or continuous queries based on query language predicates. Clients can create semantic views or 
narrow slices of the entire EDF that act as durable, stateful pub/sub messaging topics specific to application 
use-cases. Collectively, these views drive an enterprise-wide, real-time event-driven architecture.

Spanning The Globe

To accommodate wider-scale topologies beyond client/server, the EDF spans geographical boundaries using 
WAN gateways that allow businesses to orchestrate multi-site workflows. By connecting multiple distributed 
systems together, system architects can create 24x7 global workflows wherein each distinct geography/city 
acts as a service entity that owns and distributes its regional chunk of business data. Sharing of data across 
cities — e.g., to create a global book for coordinating trades between exchanges in New York, London, and 
Tokyo — can be done via asynchronous replication via persistent WAN queues. Here, consistency of data is 
weakened and eventual, but with the positive trade off of high application availability (the entire global service 
won’t be disrupted if one city goes dark) and low-latency business processing at individual locations.
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Memory-Centric Performance

With plunging cost of fast memory chips (1TB/$15,000), 64-bit computing, and multi-core servers, the EDF 
can give system designers an opportunity to rethink the traditional memory hierarchy for data management 
applications. The EDF obviates the need for high-latency (tens of milliseconds) disk-based systems by pooling 
memory from many machines into an ocean of RAM, creating a fast (microsecond latency), redundant 
virtualized memory layer capable of caching and distributing all operational data within an enterprise.

The EDF core is built in Java where garbage collection of 64-bit heaps can cause stop-the-world performance 
interruptions. Object graphs are managed in serialized form to decrease strain on the garbage collector. 
To reduce pauses further, there source manager actively monitors Java virtual machine heap growth and 
proactively evicts cached data on an LRU basis to avoid GC interruptions.

As flash memory replaces disk—an inevitability predicted by the new five minute rule [14]—EDF overflow and 
disk persistence can be augmented with flash memory for even faster overflow and lower-latency durability.

Elastic Scalability
From a distributed systems viewpoint, a key technical challenge for elastic growth is to figure out how to 
initialize new nodes into a running distributed system with consistent data. The EDF implements a patent-
pending method for bootstrapping joining nodes based on the current data that ensures “in-flight” changes 
appear consistently in the new member nodes. When a node joins the EDF, it is initialized with a distributed 
snapshot [15] taken in a non-blocking manner from current state gleaned from the active nodes. While this 
initial snapshot is being delivered and applied at the new node, concurrent updates are captured and then 
merged once the new node is initialized.

Tools, Debugging, Testing, Support
Even with theorem proven algorithms and extensive hardware and development resources, implementing 
distributed systems is challenging. Service outages from cloud computing giants like Amazon, Google, and 
Microsoft attest to the enormous difficulty of getting distributed systems right.

Subtle race conditions occur within innumerable process interleavings spread across many threads in many 
processes in many machines. Recreating problem — at ic scenarios, messaging patterns, and timing sequences 
is difficult. Testing an asynchronous distributed system with a fail stop model is not even enough since 
Byzantine faults occur in the real world (e.g., TCP check sums fail silently).

Our EDF solution is continuously tested for both correctness and performance using state-of-the-art quality 
assurance and performance tools including static and dynamic model-checking, profiling, failure-injection, and 
code analysis. We use a highly configurable multi-threaded, multi-vm, multi-node distributed testing framework 
that provisions tests across a highly scalable hardware test bed. We run a continuous project to improve our 
modeling of EDF performance based on mathematical, analytical, and simulation techniques.

Despite rigorous design, testing, and simulation,we know that bugs will always exist. Therefore, a vital design 
consideration of the EDF distributed system Includes mechanisms for comprehensive management, debugging, 
and support, e..g, meticulous system logging, continuous statistics monitoring, system health checks, 
management consoles, scriptable admin tools, management APIs with configurable threshold conditions, 
performance visualization tools.
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Our EDF solution is built and supported by a team with a 25+ year history of world-class 24x7x365 support 
that includes just-in-time, on-site operational consultations along with company-wide escalation path ways to 
insure customer success and business continuity.

SOLUTION CONSISTENCy TURNAbLE 
CAP

MULTI-ENTRy 
TRANSACTIONS

LATENCy 
bOTTLENECk

EDF Tunable: weak, 
read-your-writes, 
and ACID on 
Service-entities

Yes Tunable:
Linnearizability
to Seriallizability

Memory
(u Seconds)

Dynamo, 
Cassandra, 
Voldemort

Weak/Eventual Tunable
N/R/W

No: Only single key/
value updates

Disk 
(Dynamo=2ms, 
Cassandra=.12ms 
read, 15ms write, 
Voldemort=10ms)

SimpleDB Weak/Eventual Tunable
N/R/W

No: Only single key/
value updates

Web (Seconds)

GoogleApp 
Engine/
Megastore

Strong on local 
entitiesgroups; 
Weak/Eventual 
for distributed 
updates

No Yes Disk (30ms)

CouchDB Weak/Eventual
MVCC

No Document 
Versioning

Disk (ms to sec)

Azure Tables Basically available 
Soft State Eventual 
Consistencey 
(BASE)

No Entity Group 
Transactions

Web (Seconds)

memcached Weak/Eventual
Expiration

No No: Only single key/
value updates

Memory (u 
Seconds)

SOLUTION ACTIVE 
CACHINg

PUb/SUb
CQS/
TRIggERS

CUSTOMAPP
PARTITIONINg

FUNCTION 
SERVICE, 
MAP/REDUCE

EDF Yes Yes Yes Yes

Dynamo, 
Cassandra, 
Voldemort

No No No No

SimpleDB No No No No



The Hardest Problems in Data Management

W H I T E  PA P E R  /  1 1

SOLUTION ACTIVE 
CACHINg

PUb/SUb
CQS/
TRIggERS

CUSTOMAPP
PARTITIONINg

FUNCTION 
SERVICE, 
MAP/REDUCE

GoogleApp 
Engine/
Megastore

No No No No

CouchDB No Yes No Yes

Azure
Tables

No No No No

memcached No No No No

Conclusion
To build a data management platform that can scale to exploit on-demand virtualization environments requires 
a distributed system at its core. The CAP Theorem, however, tells us that building large-scale distributed system 
requires unavoidable trade offs. There is a current, design gap in CAP-aware solution space unsolved by the 
current wave of eventually consistent platforms. To bridge this gap, our solution, called the Enterprise Data 
Fabric (EDF), prioritizes strong consistency and high availability by introducing a weakened form of partition 
tolerance that lets businesses shrink application exposure to failure by demarcating functional boundaries 
according to service entity role dependencies. When network faults inevitably occur, failures can be contained 
in that service does not disappear wholesale, but degrades gracefully in a partial manner. Our solution also 
lets designers apply varying combinations of consistency, availability, and partition-tolerance at different 
times and locations in a business workflow. Hence, by tuning CAP semantics, a data solutions architect can 
amortize partition out age risks across the entire work flow, thus maximizing consistency with availability while 
minimizing disruption windows caused by network partitions. This configurability ultimately enables architects 
to build an optimal, high performance data management solution capable of scaling with business growth and 
deployment topologies.

From a functional view point, the EDF is a memory-centric distributed system for business-wide caching, 
distribution, and analysis of operational data. It lets businesses run faster, reliably, and more intelligently by 
co-locating entire enterprise working data sets in memory, rather than constantly fetching this data from high-
latency disk.

The EDF melds the functionality of scalable data base management, messaging, and stream processing into 
holistic middleware for sharing, replicating, and querying operational data across process, machine, and LAN/
WAN boundaries. To applications, the EDF appears as a single, tightly interwoven, overlay mesh that can 
expand and stretch elastically to match the size and shape of a growing enterprise. And unlike single-purpose, 
poll-driven, key-value stores, the EDF is alive platform — real-time Web infrastructure — that pushes real-time 
events to applications based on continuous mining of data streams — this gives enterprise customers instant 
insight to perishable opportunities.

Designed, built, and tested for over the last five years on behalf of Wall Street customers, the EDF offers any 
mission-critical business with large volume, low latency, high consistency requirements, the chance to be more 
scalable, speedier, and smarter.
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