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Abstract 
In the analysis phase of the information system development (ISD), the users' requirements are studied 
and defined. In most ISD methodologies, the requirements are defined by two models: a conceptual data 
model in form of e.g. an entity-relationship (ER) diagram or a class diagram; and a functional model in 
form of e.g. data flow diagrams (DFD) or use cases. Different ISD methodologies prescribe different 
orders of carrying out these modeling activities but there is no commonly agreed order for performing 
them.  

In order to find out whether the order of analysis activities makes any difference, and which order leads to 
better results, we have conducted two independent comparative experiments in laboratory settings. The 
subjects in the two experiments were asked to create data models and functional models of a certain 
system while working in the two opposite orders. In each experiment we used a different ISD 
methodology and different subjects, but assigned the same modeling tasks. The main results of the 
experiments are that the data models are of better quality when created as the first modeling task, and that 
analysts prefer to first create the data model and then the functional model. The results of the two 
experiments have been reported in Shoval & Kabeli (2005) and in Shoval et al. (2009). This paper 
provides an overview of the two studies.  

1. Introduction 
System analysis is usually an iterative process of refinement, consisting of two main complementing 
activities: modeling the functional requirements and modeling the data requirements. Existing ISD 
methodologies differ in the prescribed order of performing these activities: some start with creating a 
conceptual data model and continue with developing a functional model, while others prescribe working 
in the opposite order. Methodologies starting with creating the data model, e.g. a class diagram, argue that 
the initial class diagram maps the problem domain and allows describing the functional requirements 
within a well-defined context. The entities in the class diagram serve as an essential glossary for 
describing the functional requirements, and they rarely change. On the other hand, methodologies starting 
with creating a functional model argue that the classes should be based on the functional requirements and 
should be elicited from them.  

Our prior assumption is that creating a data model prior to defining the functional requirements would 
yield better results, because data objects are more “tangible” than functions: analysts can identify and 
classify more easily the objects they are dealing with and their attributes and relationships than the 
functions of the developed system, which are not “tangible” and may be vague. Of course, data modeling 
is not trivial either, but still the task of data modeling seems to be more structured and less complex 
compared to the task of defining and describing the system's functions. Besides, the analyst has to create 
just one data model (class diagram) for the system, compared to many DFDs or use cases. While in data 
modeling the analyst concentrates on the data-related aspects only, in functional modeling the analyst 
actually deals at the same time with more aspects, because DFDs or use cases are not merely about 
functions; they are also about data, user-system interaction and the process logic. Hence, it seems to us 
that starting the analysis process with the more simple and structured task would be more effective (in 
terms of quality of the created models) and efficient (in terms of time taken to create the models). Not 
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only that the first product (the data model) will be good; it will ease the creation of the following one (the 
functional model).  

One theory supporting our assumptions about the better order of analysis activities is the ontological 
framework proposed by Wand and Weber, known as BWW (see, for example Weber, 2003). According to 
this framework, the world consists of things that possess properties; this fits the "data-oriented" approach, 
particularly in the context of a class diagram. More complex notions such as processes (functions) are 
built up from the foundations of things and properties; this fits the "functional orientation" of DFDs or use 
cases. If we accept that a key purpose of modeling is to represent aspects of the real world, then it follows 
from the above framework that it is appropriate to start the modeling process by dealing with the basic 
"things and properties", i.e. data modeling, and based on that continue with the modeling of the more 
complex constructs, i.e. functional modeling. 

Another support for our assumptions comes from cognitive theory, specifically from COGEVAL 
(Rockwell & Bajaj, 2005), a propositional framework for the evaluation of conceptual models. 
COGEVAL tries to explain the quality and readability of models using various cognitive theories. 
Proposition 1 of COGEVAL relies on Capacity theories, which assume that there is a general limit on a 
person's capacity to perform mental tasks, and that people have considerable control over allocation of 
their capacities for the task at hand. Based on these theories, for a given set of requirements, the 
proposition is that it will be easier to create correct models that support chunking of requirements. This 
proposition supports our belief that it will be easier to create a data model as it deals only with data 
structure constructs. Proposition 3 of COGEVAL is based on Semantic Organization theories, which 
indicate how items are organized in long-term memory (LTM). Spreading activation theory depicts 
concept nodes by relationship links, with stronger links having shorter lengths. The modeling process can 
be considered as taking concepts and relationships in the users LTM and capturing them in a model. Based 
on this proposition, data modeling methods whose constructs allow for creation of concept-node and 
relationship-arc models, as a class diagram, will offer greater modeling effectiveness than other modeling 
methods, such as DFDs and use cases, whose constructs are not organized as concept nodes and 
relationships. 

Based on the above discussion, our initial expectation is that it is better to start with data modeling. 
However, as shown in the survey in Section 2, in fact different methodologies advocate different orders. 
Therefore, for the sake of these studies, we hypothesize (in Section 3) that there is no difference in the 
quality of the analysis models when created in either order. Similarly, we hypothesize that there is no 
difference in the analysts’ preference of the order of activities. These hypotheses were tested in two 
comparative experiments that are reviewed in Sections 4 and 5. Section 6 concludes and discusses 
limitations of the experiments.  

2. Order of Analysis in ISD Methodologies 
In the early ISD methodologies, which emerged in the mid 1970's (e.g. DeMarco, 1978), the emphasis of 
analysis was on defining the functional requirements by conducting a functional decomposition using 
mainly DFDs. Later on, with the introduction of conceptual data models, many methodologies included 
also data modeling in the analysis phase (e.g. Yourdon, 1989). Nevertheless, functional analysis was still 
the primary activity and the data analysis was only secondary to it. 

In the early 1990's, with the emergence of the object-oriented (OO) approach to ISD, new methodologies 
were introduced to support the analysis and design of information systems according to this concept. 
Some of these methodologies (e.g. Coad & Yourdon, 1991; Meyer, 1998; Rumbaugh et al., 1991; Shlaer 
& Mellor, 1992) suggested a different analysis concept: object-driven, instead of functional-driven, i.e. the 
analysis emphasis is on finding the domain objects, and based on them identifying the services that these 
objects ought to provide. However, there were still methodologies that kept with the functional-driven 
approach, where a functional analysis is performed first and then the object model is derived from it, 
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whether directly or through a conceptual data model; for example: Jacobson et al. (1992), and Rubin & 
Goldberg (1992). 

Aiming at solving the problems raised by the vast amount of methods and techniques, UML (Unified 
Modeling Language) was adopted by the Object Management Group as its standard for modeling OO 
systems. UML's main tools for describing the user/functional requirements and the object model of a 
system are use cases and class diagrams, respectively. Being merely a modeling language, UML defines 
no development process. However, many methodologies that use the UML have been developed. Despite 
many variations between different UML-based methodologies, in most of them the analysis phase 
comprises two main activities: data model using class diagrams, and functional modeling using use case 
diagrams and descriptions.  

UML-based methodologies which adopt use cases as the requirements description tool are usually "use 
case-driven". Unified Process - UP (Jacobson, Booch & Rumbaugh, 1999) is one of the most documented 
and influential use case-driven methodologies. The first analysis activity according to UP is creating use 
case scenarios, whilst an initial class diagram is only created in the next phase called Use Case Analysis. 
Since UP is a most commonly used methodology, it is common in industry that users spend a great deal of 
effort on conducting use case analysis aimed at identifying the business requirements, while class 
diagrams are seen as more closely associated with system design and implementation, therefore often 
delayed until a reasonable use case analysis is performed. 

Another example for an OO methodology that starts with functional modeling is Insfran et al. (2002). It 
starts by specifying high-level functional requirements, which are then systematically decomposed into a 
more detailed specification. They define a requirements model (RM) that captures the functional and 
usage aspects, and a requirements analysis process that translates those requirements into a conceptual 
schema specification. The RM includes a functional refinement tree, i.e. a hierarchical decomposition of 
the business functions, which are used for building use case specifications. The use cases are used as basis 
for the conceptual modeling phase. The major activities at this stage are to define an object model, a 
dynamic model, and a functional model. This process is based on the analysis of each use case aimed at 
identifying classes and allocating their responsibilities. 

But there are also UML-based methodologies that start the analysis process with data modeling. For 
example, UMM (Hofreiter et. al, 2006), an enhancement of UP specifically intended to model business 
processes and support the development of electronic data interchange (EDI) systems. Unlike the 
previously surveyed methodologies, UMM starts with a phase called Business Modeling in which the first 
step is performing domain analysis. Identifying the “top-level entities” in the problem domain is done 
using Business Operations Map, a tool that presents a hierarchy of Business Areas, Process Areas and 
Business Processes. Subsequently, use cases are created to describe the functional requirements.  

Similarly, ICONIX (Rosenberg & Kendall, 2001) suggest starting the analysis by creating a class diagram 
describing the real world entities and concepts in the problem domain, using the name Domain Model for 
this preliminary class diagram. According to the authors, the general class diagram, which describes the 
domain and not a specific solution, is an important basis and a glossary for creating use cases that describe 
the functional requirements.  

FOOM methodology (Shoval, 2007; Shoval & Kabeli, 2001) too suggest starting the analysis by creating a 
conceptual data model termed initial class diagram, and then creating a functional model consisting of 
hierarchical OO-DFDs. An OO-DFD is similar to a "traditional" DFD but instead of data stores it includes 
data classes, which are taken from the initial class diagram. At the end of the analysis phase, before 
moving on to designing the system, the two modes are verified and synchronized.  
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3. The Research Goals and Hypotheses 
The goal of our experiments was to determine through controlled comparative experiments whether there 
is a preferred order for performing the two modeling activities. In each experiment we formed two 
homogeneous groups of subjects who played the role of analysts. Each subject was asked to create a 
functional and a data model of a certain system based on a requirements document. We used the same 
system in the two experiments - the IFIP Conference case study (Mathiassen et al, 2000). Subject in one 
group started with data modeling and continued with functional modeling; subject of the other group 
worked in the opposite order. The difference between the two experiments was mainly in the ISD 
methodology: in the first experiment we used FOOM methodology, while in the second – a UML-based 
methodology. 

  

4. Experiment 1 

4.1 The ISD methodology 
In this experiment we used the FOOM methodology (Shoval, 2007; shoval and Kabeli, 2001), which 
combines the functional and the OO approaches. In the analysis phase of FOOM, two models are created: 
a) a conceptual data model, in the form of an initial class diagram, and b) a functional model, in the form 
of hierarchical OO-DFDs. The initial class diagram consists of data (entity) classes, with attributes and 
various types of associations. (The notation of the FOOM class diagram is somewhat different from the 
UML class diagram; for example, it includes reference attributes in addition to association links between 
classes). The OO-DFDs are similar to traditional DFDs but, as said, they include data classes instead of 
data stores.  

The above modeling activities of the FOOM analysis phase can be performed in opposing orders, one 
beginning by creating the OO-DFDs and then specifying the initial class diagram, and the other by first 
creating the initial class diagram and then specifying the OO-DFDs. When the performing order begins 
with functional analysis the analyst first produces a hierarchy of OO-DFDs (based on the users' 
requirements), and then creates an initial class diagram including classes already appearing in those OO-
DFDs. This amounts to mainly defining appropriate associations among the classes and their attributes. 
When the performing order begins with data modeling, the analyst first creates an initial class diagram 
(based on the users' requirements) and then creates the OO-DFDs using the already defined classes. In any 
case, no matter which order of activities is followed, FOOM completes the analysis phase by verifying 
that the two products are in sync; i.e., that each class specified in the class diagram appears in at least one 
of the OO-DFDs, and vice versa, and that each attribute of a class is updated and retrieved by at least one 
function. 

In the design phase, the above products are used to create a complete class diagram, including Interface, 
Input, Output and Control classes, and mainly to design the various class methods. (More details about 
FOOM are beyond the scope of this paper.)  

4.2. Description of the experiment  
The rationale behind this experiment, besides the above discussion about various methodologies and their 
approach to this issue, we were concerned about which order of analysis activities to recommend in the 
FOOM methodology because the two orders are possible. In this experiment we have defined three 
dependent variables, which are surrogates for performance: a) Quality of model: we examined how 
good/correct are the functional and the data models created by the subjects while working in the opposite 
orders; b) Time: we examined how long it takes to create each of the two models while working in the 
opposite orders; c) Preference: we examined which order of analysis activities the analysts prefer. 
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In order to measure and compare the correctness of the created models and control other variables, we 
instructed the subjects to analyze the requirements document and create an initial class diagram and three 
OO-DFDs: a root DFD and two sub-level DFDs. The subjects were undergraduate students of Information 
Systems Engineering who took the same courses and studied the functional and OO approaches and the 
FOOM methodology in the same classes with the same instructor. The subjects were motivated by the fact 
that their grades on quality (correctness) of specifications would be considered as part of their course 
grades. The subjects were divided randomly into two groups: the 27 members in one group (marked DF) 
started with creating the data model, while the 29 members in the other group (marked FD) started with 
creating the functional model.  

When the experiment began each subject received the requirements document of the IFIP Conference 
system and solution sheets for the first task. After a subject completed the first task, sheet(s) for the 
second task were handed out. The solution sheets of the first task were not handed in but were used in 
preparing the solution for the second task. The start and completion times of each task were recorded. At 
the end of the experiment each subject was asked to complete a short subjective questionnaire, using a 7 
point scale, on the preferred order of analysis.  

The quality or correctness of each model (class diagram or OO-DFDs) was measured according to the 
number and type of error found. We used a grading scheme which determined the number of points 
deducted per error type according to the severity of the error, a method that was also used in previous 
studies. Each model (diagram) was graded separately. The grade of the functional model was computed as 
the average of the three OO-DFD grades.  

4.3 Results 
4.3.1 Quality of models 

Tables 1 present the grades of the quality of models. The last column denotes if the results are significant.  
Table 1.  Quality of Models 

Model Analysis 
Order 

Mean 
Grade (%) 

F P-value 
(α=0.05) 

Significance in 
favor of 

Data model DF 
FD 

71.48 
58.50 7.23 0.0098 Starting with 

data model 

Functional model DF 
FD 

83.86 
83.71 0.004 0.9474 - 

 
As can be seen, the quality of the data model (1st row) is significantly better when created before the 
functional model (mean grades 71.48 and 58.5, respectively).  

On the other hand, we found no significant difference in qualities of the functional models (2nd row). 
(Note that in both orders of analysis, the grades of the functional model are relatively high compared to 
the grades of the data model. A possible explanation to this may be that the grading scheme caused the 
deduction of more error points on the data model. In any case, this does not influence the conclusions so 
long as the same grading scheme is used on all subjects.) 

Since we found no significant difference with respect to the functional models, but a significant difference 
with respect to the data models, we conclude that all together the analysis order beginning with data 
modeling provides better results.  

4.3.2 Time taken to complete the tasks 

Time in itself may be an unimportant factor (mainly when dealing with "toy" systems that take only about 
two hours to model), but when we relate time with performance (quality) interesting results may arise. As 
can be seen in Table 2, the total time taken to create the two models was almost the same for the two 
groups, but within each group, while the time taken to perform the two tasks by the DF subjects (who 
started with data modeling) was almost the same (58.09 and 56.29), the time taken to perform the first task 
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by the FD subjects (who started with functional modeling) was much longer that the time taken to perform 
the second task (74.24. compared to 38.6). In other words, those who started working on the functional 
model had to spend so much time on it that not much time was left for the data modeling task. This can 
explain why these subjects performed so poor on the data modeling task (as seen in Table 1).  

Table 2.  Times to Complete the Analysis tasks 

Mean Time (minutes) Analysis 
Order Data 

model 
Functiona
l model 

Significance in 
favor of 

DF 
FD 

58.09 
38.6 

56.29 
74.24 

Starting with 
data model 

 
4.3.3 Preferences of analysts 

Table 3 presents the results of the subjective preferences of analysts. Row DF shows the scores of 
preference of the analysis order commencing with data modeling, and row FD shows the scores of 
preference of the analysis order commencing with functional modeling. Column DF shows the scores 
given by subjects that first performing data modeling and column FD the scores of those first performing 
functional analysis. Column “All together” shows the mean scores of all subjects together. It can be seen 
that all subjects were in favor of the analysis order beginning with data modeling. Interestingly, subjects 
who began with functional analysis also preferred the order of beginning with data modeling, even though 
they received low grades on it. 

Table 3. Preference of Analysis Order 

Mean Scores (1-7 point scale) Analysis 
Order DF 

(N=27) 
FD 

(N=29) 
All 

together 

Significance in 
favor of 

DF 
FD 

4.48 
4.14 

5.724 
2.586 

5.103 
3.367 

Starting with 
data model 

 
5. Experiment 2 

5.1 The ISD methodology and description of the experiment 
This experiment was carried out about two years later, with a different group of students and a different 
methodology. The main reason for repeating the experiment was that in the first experiment we used the 
FOOM methodology, which is not as common as UML-based methodologies. So in order to examine the 
validity of the previous results we have decided repeat the experiment, using the same IFIP Conference 
system, but for data modeling we used the "standard" UML class diagram, and for functional modeling we 
used use case diagrams and descriptions.   

The subjects of this experiment too were senior students of Information Systems Engineering. We 
performed this experiment as a mid-term exam in the OO Analysis and Design course. Before the exam, 
the subjects learned the OO analysis approach and UML, including use cases and class diagrams. To 
direct the subjects toward a unified style of describing use cases, a tutorial was conducted that included 
teaching Alistair Cockburn’s (2001) use case writing guidelines.  

In this experiment there were 121 subjects: 57 in the DF group and 64 in the FD group. Here too we 
motivate the subjects to perform the tasks to the best of their ability by considering their quality grades as 
a part of the final course grade. In this experiment the dependent variables were the quality of the created 
models and the subjective preferences of the analysts (but we did not measure the time taken to complete 
the tasks). Similar to the 1st experiment, the quality of the analysis models was measured using grading 
schemes that determined the number of points to deduct for each error type in every model. But here the 
schemes were adapted for UML class diagrams and use cases. Since class diagram is a well-defined tool 
with a strict structure and syntax, mapping the possible errors in it was straightforward. Use cases, on the 
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other hand, are less structured and described using free text. Mapping the possible errors in the use case 
descriptions required first defining the components that the analysts are expected to describe and that we 
would like to measure in terms of quality. To create the grading scheme, we were assisted by the use of 
case error mapping in Anda & Sjoberg (2002), which is also based on Cockburn's approach (Cockburn, 
2001). After identifying the components, as in the class diagram, we mapped the possible errors in each 
component, and determined the error points.  

5.2 Results 
5.2.1 Quality of models 

Table 4 presents the grades of quality of the models. The first row presents the results for the data model 
(class diagram). As can be seen, the grades are significantly higher when starting the analysis with data 
modeling (73.63) compared to when starting with functional modeling (70.25). The second row presents 
the quality results of the functional models (use cases). As can be seen, here there are no significant 
differences.  

It should be noted that the quality results of this experiment are consistent with the results obtained in the 
1st experiment. 

 Table 4.  Quality of Models 

Model Analysis 
Order 

Mean 
Grade (%) F P-value 

(α=0.05) 
Significance in 

favor of 
Data 

model 
DF 
FD 

73.63 
70.25 4.386 0.038 Starting with 

data model 
Functional 

model 
DF 
FD 

63.72 
65.03 0.192 0.662 - 

 
5.2.2 Preferences of analysts 

After the experiment each subject was asked to express to what degree he/she believes that the order of 
analysis used is good/appropriate using a 1-7 point scale, where 1 means total preference to start with a 
class diagram, and 7 means total preference to start with use cases. Table 5 presents the results for each 
group of subjects and for all together. The results show that the subjects definitely prefer to create a class 
diagram first and then use cases (mean preference of all is 2.78; much closer to 1 than to 7). Interestingly, 
subjects who started the analysis with use cases showed even stronger preference to start with creating a 
class diagram (2.61 compared to 2.91). The preference towards an order of analysis starting with a class 
diagram matches both our expectation and the results obtained in the first experiment.  

 Table 5. Analysts’ Preferences 

Analysis order Mean 
preference STD Significance in 

favor of 
DF 2.91 1.54 
FD 2.61 1.82 

All together 2.78 1.66 

Starting with 
data model 

 
6. Conclusions and Limitations  
The results of the two experiments reveal that starting the analysis with data modeling yields a better data 
model. On the other hand, we did not find a significant effect of the analysis order on the quality of the 
functional models. Thus, starting the analysis process with data modeling should result in a better overall 
quality of the analysis models. We also found out that analysts prefer creating the data model first, and 
that when working in this order, the time to create the two models is allocated more effectively. 
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As other controlled experiments in laboratory settings, these two too have limitations threatening their 
validity. An obvious limitation is that we used a relatively small and simple problem (the IFIP Conference 
system) while in reality problems are usually much bigger and more complex; we cannot be sure how size 
and complexity of a system would affect the results with respect to the order of analysis activities. 
Another limitation is that we used students with almost no industrial experience as surrogates for analysts. 
This limitation is common to almost all experimental work in Software Engineering. We cannot predict if 
and how the cumulative experience of analysts might affect the preferred order of analysis activities. 

A potential limitation of the experiments is the grading schemes. Some subjectivity may exist in the 
weights of error points. We determined the weights based on our assessment of the importance of each 
error type. In doing so we followed earlier studies who also adopted subjective grading schemes to assess 
quality of models. The potential problem with such grading schemes is that the subjective weights (error 
points) assigned to error types may affect the overall results. The problem is that there are no objective 
weights and grading schemes for different methods or models. This issue deserves a separate research. 

Being “laboratory” experiments, we used a requirements document to represent the real world and the 
users’ needs; we actually forced a one-way modeling process, where the analyst/subject reads a given 
requirements document and creates from it the analysis models. This is not really an analysis task; in 
reality there are real users who have real needs, and the analysis process involves a lot of interaction 
between analysts and users. Although we may assume that such interaction would affect the quality of the 
resulting models, the question of which is the better order of activities is still valid. As already discussed, 
in spite of being aware of the interactive nature of the analysis process, still different methodologies 
prescribe certain orders of activities without even questioning if the prescribed order is good. Even if we 
agree that our studies do not necessarily simulate real analysis processes, they at least propose a good 
strategy to create analysis models in cases where user requirements are already given in the form of a 
requirements document.  
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