
Object-Oriented Databases
Commercial OODBMS: ObjectStore

• ObjectStore PSE Pro for C++

• Virtual Memory Architecture

• Managing Persistent Object Data

November 13, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 1

Progress ObjectStore

 Both Java and C++ environments supported

 ObjectStore Personal Storage Edition (PSE) Pro
 lightweight object database

 large, single-user databases

 small memory footprint (~500kB)

 multithreaded

 embedded systems, mobile computing and desktop applications

 ObjectStore Enterprise
 high-performance, distributed, multi-user database

 distributed, persistent, transactional object caching

 clustering, online backup, replication, high availability

 Migration of applications to from PSE to Enterprise is easy

November 13, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 2

ObjectStore Architecture

 Virtual memory mapping architecture extends operating

system virtual memory architecture to provide persistence
 logical versus physical address

 physical memory and secondary storage

 page faulting

 address translation

 Characteristics of the ObjectStore architecture
 virtual

 shared

 distributed

 heterogeneous

 persistent

 transactional

November 13, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 3

assumed knowledge from

operating system courses

Virtual Memory Mapping Architecture

 Logical versus physical address
 data is uniquely referenced within the database using a 4-part key

 yields a theoretical address space of 0...2128

 data is mapped from this 128 bit range into a reserved area of the
database client application’s virtual memory (<< 2128 address space)

 reserved area is called persistent storage region (PSR)

 Physical memory and secondary storage
 all data accessed by client application must reside in PSR

 cache serves as secondary storage for operating system (instead of
swap file) for persistent data mapped to logical address space

 cache holds recently accessed data even across transactions

November 13, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

database segment cluster offset in cluster

Virtual Memory Mapping Architecture

 Page faulting
 ObjectStore maps data into application when a fault interrupt occurs

 data is paged into memory from cache if not in PSR or fetched from
the server if not in cache

 demand paging is primary means by which data gets from database
into cache and then into application

 Address translation
 address translation is done when data is fetched into cache

 retranslation can occur when PSR gets nearly full

 updated pages are translated back to logical addressing schema
before being written back to database

 trade-off: ability to use direct software pointers yields performance
and modelling advantages, but translating pointers and pre-reserving
address space has scalability implications

November 13, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Architecture Overview

November 13, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Daya

C
li
e
n

t
S

id
e

S
e
rv

e
r

S
id

e

ObjectStore
Server

Heap

Stack

PSR
Cache

Manager

DatabaseDatabase

Commseg

Client

Cache

Transaction Log

C++ Client

Session

Server Side Components

 Server
 serves out pages and enforces ACID semantics using “page permits”

 co-operates with other servers in two-phase commits

 automatic recovery mechanism when restarted

 Database
 managed by one server (but server can manage multiple databases)

 binary files storing pages of memory containing C++ objects

 normally deployed in the file system on server-local discs

 Transaction Log
 each server owns transaction log to which updated pages are written

 pages only propagated to the database when transaction commits

 used for automatic recovery, faster commits and MVCC mechanism

November 13, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Client-Side Components

 Client
 C++ program linked with the ObjectStore libraries
 interacts with the database and manages objects
 pages automatically fetched from database as needed and cached

 Cache
 one cache memory mapped file per client process
 has a fixed size that cannot change once the client has started
 all pages fetched from the database by this client are held in cache
 pages can be retained in the cache between transactions

 Commseg
 one commseg memory mapped file per client process
 contains meta-information about every page in the cache
 stores permit and a lock for every page in the cache
 permits can be retained between transactions

November 13, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Client-Side Components

 Cache Manager
 one cache manager process per client machine is shared by all

clients on that machine

 handles permit revokes

 reads/writes to cache and commseg files

 not directly involved in page fetch in any way

 Persistent Storage Region
 is a reserved area of the virtual address space of the C++ program

 address of persistent objects used by client mapped into PSR

 value of pointers to persistent objects will be in the range of the PSR

 at the end of every transaction the PSR is cleared and can be
reused for the next transaction

November 13, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Fetching and Mapping Pages

 Client automatically fetches and maps pages
 pages are fetched “lazily” as needed

 pages are held in the client cache

 Pointer swizzling used to translate logical addresses on
fetched page into physical addresses within PSR
 C++ pointers to already fetched objects

 C++ pointers to ranges pre-reserved for yet-to-be fetched objects

 Server permits and client locks acquired automatically to
ensure transaction consistency

 Existing page swapped out if not enough room in cache to
hold new page
 updated pages are sent to the server

 read-only pages are dropped from cache as copy exists in database

November 13, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Fetching and Mapping Pages

 ObjectStore installs SIGSEGV

(segment violation) handler

 Program obtains pointer p to

object on page x

 Dereferencing p causes the

SIGSEGV handler to be called

 Virtual mapping table is

consulted and page fetched from

server and stored in the cache

 Page x is mapped to the address

space and execution continues

November 13, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Code

Stack

PSR

Address Space

Heap

ObjectStore Database

ObjectStore Cache

handler(void *ptr)

x

x

x

p

x

Cache-Forward Architecture

 Key to ability of ObjectStore to provide high performance
 data is cached across transaction boundaries

 number of times locks must be acquired is reduced

 cached data is kept in a globally consistent state

 ObjectStore maintains two types of locks on pages
 transaction locks represent the state of a page during transaction

 ownership permits represent the state of a page in the cache

 Permits are tracked by server and locks are taken by client
 server serves permits on pages that are sent to the client

 a client can then lock pages according to the given permit

November 13, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Shared Virtual Memory

 ObjectStore uses a lazy call-back mechanism for permits

 Server maintains a table of permits assignments to clients

 When a client requests a page from the server
 server checks for other clients with permit for page and permit types

 server issues call-back if one or more clients have conflicting permits

November 13, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 13

ObjectStore

Server

ObjectStore

Client

ObjectStore

Client

ObjectStore

Client

ObjectStore

Client

Page Permits and Locks

 Read permit

 client can lock page for reading

without consulting the server

 many clients can hold a read permit

for a page simultaneously

 Write permits

 client can lock page for reading or

writing without asking the server

 only one client can hold a write permit

for a page at any given time

 Cache manager inspects permit
and lock status for call-back

 POSITIVE

 NEGATIVE (but permit is flagged

to be revoked at transaction end)

Permit Lock Response

read read

server only calls

back permit if other

client needs to write

read no lock

write read

permit for page

downgraded to read

write write

write no lock

November 13, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Distribution and Heterogeneity

 Clients can access objects in different remote databases in

the same transaction

 Clients and servers can run on different platforms
 physical object layout transformed automatically by client runtime

when page mapped into cache

 database records which platform wrote to each page last

November 13, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Solaris C++

Client

Windows

C++ Client

Windows

C++ Client

Linux C++

Client

Solaris C++

Server

HP-UX C++

Server

Persistence

 ObjectStore uses persistence by instantiation in C++

 Overloaded persistent new operator takes three arguments
 allocation of the new object

 type spec of the new object

 optionally, how many objects are to be allocated

 Several options for object allocation
 transiently on the heap

 database

 segment

 cluster

 next to another object

 Persistence is orthogonal to the type of an object and one
codebase can be used for transient and persistent objects

November 13, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 16

Note: given the virtual memory architecture

it is helpful to co-locate objects which are

used together to achieve high performance

designs and implementations

Transactions

 Support for basic ACID properties of transactional systems

 Atomicity
 after commit it is guaranteed that data was written and is recoverable

 after abort all changes are undone

 Consistency
 it is impossible to apply or lose updates while data is being written

 Isolation
 serialisability (CPSR) is guaranteed by two-phase locking (2PL)

 Multi-View Concurrency Control (MVCC) provides serialisability for
read-only transactions using snapshots instead of locks

 Durability
 changes are written to the transaction log first

 background process propagates changes to the database

November 13, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 17

Transaction Types

 Read or Write
 Read transaction throws an exception if a page write lock is

requested

 Local or Global
 Local only allows the initiating thread to execute

 Global allows all threads in a session to share the transaction

 Lexical or Dynamic
 Lexical transactions automatically retry on deadlock

 Lexical must start and end in same code block

 Lexical transactions are always thread-local

 Dynamic transactions are the lower level os_transaction class

 Dynamic transactions are better suited to multi-threaded applications

November 13, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Database Layout

 Memory pages held in hierarchy

of clusters within segments

 Segments

 define logical partitioning of objects

 Segment 0: schema segment contains

database schema and database roots

 Segment 2: default segment

 Segment 4: first user-created segment

 maximally 232 segments per database

 Clusters

 group closely related objects

 each segment has a default cluster 0,

other clusters created by user

 maximally 231 clusters per segment

Segment 0

November 13, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Segment 2

Segment 4

Database Schema Database Roots

Developing Applications

 Programmer uses the ObjectStore libraries
 objectstore ObjectStore runtime

 os_database database management functionality

 os_transaction transaction handles and functionality

 os_typespec functionality to determine type specification

 os_database_root creation, retrieval and removal of roots

 os_segment segment access and management

 os_cluster cluster access and management

 Development process
 writing of persistent classes, schema file and application logic

 compilation of schema file with pssg compiler

 compilation of classes with C++ compiler

 linking of object code

November 13, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Managing Databases

 Database management is provided by os_database
 create() creates a new database

 open() opens an existing database

 save() saves the database and makes changes permanent

 close() closes an open database, but does not save state

 destroy() deletes a database

November 13, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

#include <os_pse/ostore.hh>

int main(int argc, char **argv, char **envp)

{

objectstore::initalize();

os_database *db = os_database::create("publications.db", 0664, 1);

...

db->save();

db->close();

db->destroy();

objectstore::shutdown();

}

Transactions

 Transaction functionality is provided by os_transaction

 all interactions with the database must be in a transaction

 transactions can be nested arbitrarily

 Ways of defining and working with transactions
 directly using class os_transaction (dynamic)

 using macros provided with the ObjectStore libraries (lexical)

November 13, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

objectstore::initialize();

os_transaction::initialize();

os_database *db = os_database::open("publications.db", 0, 1);

OS_BEGIN_TXN(txn0, 0, os_transaction::update)

{

...

os_transaction *txn = os_transaction::get_current();

txn->abort();

}

OS_END_TXN(txn0)

Running Example

+getName(): String

+setName(name: String)

+getBirthday(): Date

+setBirthday(birthday: Date)

+getAge(): int

name: String

birthday: Date

Author

+getTitle(): String

+setTitle(title: String)

+getYear(): int

+setYear(year: int)

title: String

year: int

Publication

+getBeginPage(): int

+setBeginPage(page: int)

+getEndPage(): int

+setEndPage(page: int)

beginPage: int

endPage: int

Article

+getPrice(): double

+setPrice(price: double)

price: double

Book

0..* 0..*
authors

November 13, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Class Author

class Author

{

private:

const char *_name;

time_t _birthdate;

public:

// Constructor and destructor

Author(const char *name);

~Author();

// Getters and setters

const char* getName() const;

void setName(const char *name);

const struct tm* getBirthdate() const;

void setBirthdate(int day,

int month, int year);

// Derived methods

int getAge() const;

};

November 13, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

#include "Author.h"

Author::Author(const char *name)

{

this->setName(name);

_birthdate = 0;

}

Author::~Author(void)

{

if (_name) {

delete [] _name;

_name = 0;

}

}

const char* Author::getName()

{

return _name;

}

...

Creating Persistent Objects

 Objects in the database are created with the overloaded
persistent new operator

 creating a single persistent object

 creating a persistent array of objects

November 13, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

os_database *db = os_database::open("publications.db", 0, 1);

Author *scheel = new(db, os_ts<Author>::get()) Author("Matthias Geel");

db->close();

void Author::setName(const char* name)

{

delete [] _name;

_name = 0;

if (name) {

int length = static_cast<int>(strlen(name)) + 1;

_name = new(os_cluster::of(this), // allocate in the same cluster

os_typespec::get_char(), // get char type spec

length) char[length]; // create an array of size length

strcpy_s(_name, length, name);

_name[length] = 0;

}

}

Updating and Deleting Persistent Objects

 Changes to persistent objects are propagated to database
automatically when pages are sent back to server
 client application updates memory-mapped version of persistent

objects using standard C++

 persistent objects are deleted by deleting the memory-mapped
version of object using standard C++

 Fully transparent to the application developer

November 13, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

os_database *db = os_database::open("publications.db", 0, 1);

Author *moira = new(db, os_ts<Author>::get()) Author("Moira Norrie");

moira->setName("Moira C. Norrie");

db->save(); // page with updated version of object is sent to server

delete moira;

moira = 0;

db->save(); // page without the object is sent to server

Collections and Relationships

 Relationships between classes modelled as collections

 ObjectStore collection facility
 a library of non-templated and templated collection types

 traversal, manipulation, and retrieval functionality

 represented by class os_collection

November 13, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

// Forward declaration

class Publication;

class Author

{

private:

...

friend class Publication;

os_Set<Publication*>* _authors;

public:

...

void addPublication(Publication *p);

void removePublication(Publication *p);

};

// Forward declaration

class Author;

class Publication

{

private:

...

friend class Author;

os_List<Author*>* _authoredBy;

public:

...

void addAuthor(Author *a);

void removeAuthor(Author *a);

};

Collection Hierarchy

November 13, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

os_collection

os_Collection<E>

os_Set<E>

os_Bag<E>

os_List<E>

os_Array<E>

os_set

os_bag

os_list

os_array

os_dictionary

os_Dictionary<K, V>

Collections Example

 Creating a collection

 Accessing and manipulating a collection

 Deleting a collection

November 13, 2009 29Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Author::Author(const char *name)

{

...

_authors = new(os_cluster::of(this),

os_Set<Publication*>::get_os_typespec()) os_Set<Publication*>();

}

void Author::addPublication(const Publication *p)

{

_authors->insert((Publication*) p);

os_List<Author*> *authoredBy = p->_authoredBy;

authoredBy->insert(this);

}

Author::~Author(void)

{

...

delete _authors;

_authors = 0;

}

Cursors over Collections

 Cursors are used to navigate and manipulate collections
 represented by class os_Cursor

 first() positions the cursor at the first element

 next() moves the cursor to the next element

 more() returns true if the cursor points to an element

 Cursor can be reused by rebinding it to another collection

November 13, 2009 30Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

const os_Set<Publication*>* Author::getPublications() const

{

os_Set<Publication*> *result = new(

os_database::get_transient_database(),

os_Set<Publication*>::get_os_typespec()) os_Set<Publication*>();

os_Cursor<Publication*> c(*_authors);

for (Publication *publication = c.first(); c.more(); publication = c.next()) {

result->insert(publication);

}

return result;

}

Queries over Collections

 Queries are evaluated over collections by specifying the

element type, query string and schema database
 query string indicates the selection criterion, either specified in C++

or as a pattern matching expression

 support for function calls in query strings restricted to basic types

 support for nested queries

November 13, 2009 31Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

// Find all authors younger than 30 with more than 10 publications

char* query = "this->getAge() < 30 && this->getPublicationCount() > 10";

os_Set<Author*> &result = _authors->query("*Author", query, _db);

os_Cursor<Author*> c(result);

for (Author *author = c.first(); c.more(); author = c.next()) {

cout << author->getName() << endl;

}

Database Roots

 Database roots are persistent objects which have been

labelled with a well-known name

 Represented by class os_database_root
 root name held as a char*

 pointer to the object of interest held as a void*

November 13, 2009 32Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Author* Database::retrieveAuthor(const char *name)

{

os_Dictionary<char*, Author*> *authors = 0;

os_database_root *root = _db->find_root("authors");

if (!root) {

root = _db->create_root("authors");

authors = new(_db, os_Dictionary<char*, Author*>::get_os_typespec())

os_Dictionary<char*, Author*>();

root->set_value(authors);

}

authors = (os_Dictionary<char*, Author*>*) root->get_value();

return authors->pick((char*) name);

}

Literature

 ObjectStore
 http://www.progress.com/objectstore/

November 13, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 33

Next Week
Commercial OODBMS: Objectivity/DB

• Objectivity/DB for .NET

• Logical Storage Model: Federated Databases

• Language Integrated Queries (LINQ)

November 13, 2009 34Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

