
Object-Oriented Databases
db4o: Part 1

• Managing Databases, Storing and Retrieving Objects

• Query by Example, Native Queries, SODA

• Simple and Complex Objects, Activation, Transactions

October 2, 2009 1Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Introducing db4o

 Open source native object database for Java and .NET

 Key features
 No conversion or mapping needed

 No changes to classes to make objects persistent

 One line of code to store objects of any complexity

 Works in local or client/server mode

 ACID transaction model

 Object caching and integration with native garbage collection

 Automatic management and versioning of database schema

 Seamless Java or .NET language binding

 Small memory foot-print (single 2Mb library)

October 2, 2009 2Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

db4o Architecture

Database File/In-Memory Database

I/O Adapter (deprecated: Storage and Bin)

ACID Transactional Slots

Object Marshaller Class Index BTrees Field Index BTrees

Index Query Processor

SODA Query Processor

SODA Queries
Query by

Example
Native Queries

Class

Metadata

Reference

System

R
e

fle
c

to
r

API

Application

List<Author> authors = db.query(

new Predicate<Author>() {

public boolean match(Author author) {

return author.getName().startsWith("M");

}

}

);

October 2, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Example Class Hierarchy

+getName(): String

+setName(name: String)

+getBirthday(): Date

+setBirthday(birthday: Date)

+getAge(): int

name: String

birthday: Date

Author

+getTitle(): String

+setTitle(title: String)

+getYear(): int

+setYear(year: int)

title: String

year: int

Publication

+getBeginPage(): int

+setBeginPage(page: int)

+getEndPage(): int

+setEndPage(page: int)

beginPage: int

endPage: int

Article

+getPrice(): double

+setPrice(price: double)

price: double

Book

0..* 0..*

October 2, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Example Java Classes

public class Author {

private String name;

private Date birthday;

private Set<Publication> pubs;

public Author(String name) {

this.name = name;

this.pubs =

new HashSet<Publication>();

}

public String getName() {

return this.name;

}

public void setName(String name) {

this.name = name;

}

...

}

public class Publication {

private String title;

private int year;

private List<Author> authors;

public Publication(String title) {

this.title= title;

this.authors =

new ArrayList<Author>();

}

public String getTitle() {

return this.title;

}

public void setTitle(String title) {

this.title = title;

}

...

}

October 2, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Object Container

 Represents db4o databases

 supports local file mode or client connections to db4o server

 Owns one transaction
 all operations are executed transactional

 transaction is started when object container is opened

 after commit or rollback next transaction is started automatically

 Manages links between stored and instantiated objects
 manages object identities

 loading, updating and unloading of objects

 Lifecycle
 intended to be kept open as long as programs work against it

 references to objects in RAM will be discarded when closed

October 2, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Storing Objects

// create a publication

Publication article = new Publication("Concepts for Content Management");

// create authors

Author michael = new Author("Michael Grossniklaus");

Author moira = new Author("Moira C. Norrie");

// assign authors to publication

article.addAuthor(michael);

article.addAuthor(moira);

// store complex object

ObjectContainer db = Db4oEmbedded.openFile("test.db");

db.store(article);

 Store objects with method store of ObjectContainer

 Stores objects of arbitrary complexity

 Persistence by reachability

October 2, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Retrieving Objects

 db4o supports three query languages

 Query by Example
 simple method based on prototype objects

 selects exact matches only

 Native Queries
 expressed in application programming language

 type safe

 transformed to SODA and optimised

 Simple Object Data Access (SODA)
 query API based on the notion of a query graph

 methods for descending graph and applying constraints

October 2, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Query by Example

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// get author "Moira C. Norrie"

Author proto = new Author("Moira C. Norrie");

ObjectSet<Author> authors = db.queryByExample(proto);

for (Author author: authors) {

System.out.println(author.getName());

}

// get all publications

ObjectSet<Publication> publications = db.query(Publication.class);

for (Publication publication: publications) {

System.out.println(publication.getTitle());

}

October 2, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Native Queries

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// find all publications after 1995

ObjectSet<Publication> publications = db.query(

new Predicate<Publication>() {

public boolean match(Publication publication) {

return publication.getYear() > 1995;

}

}

);

for (Publication publication: publications) {

System.out.println(publication.getTitle());

}

October 2, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

SODA Queries

 Expressed using Query objects
 descend adds or traverses a node in the query tree

 constrain adds a constraint to a node in the query tree

 sortBy sorts the result set

 orderAscending and orderDescending

 execute executes the query

 Interface Constraint
 greater and smaller comparison modes

 identity, equal and like evaluation modes

 and, or and not operators

 startsWith and endsWith string comparisons

 contains to test collection membership

October 2, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

SODA Queries

 Find all publications published after 1995

 Find all publications of author "Moira C. Norrie"

Class: Publication.class

"year"

Greater: 1995

Class: Publication.class

"authors"

Contains: new Author("Moira C. Norrie")

October 2, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

SODA Queries

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// find all publications after 1995

Query query = db.query();

query.constrain(Publication.class);

query.descend("year").constrain(Integer.valueOf(1995)).greater();

ObjectSet<Publication> publications = query.execute();

for (Publication publication : publications) {

System.out.println(publication.getTitle());

}

// find all publications of author "Moira C. Norrie"

Query query = db.query();

query.constrain(Publication.class);

Author proto = new Author("Moira C. Norrie");

query.descend("authors").constrain(proto).contains();

ObjectSet<Publication> publications = query.execute();

for (Publication publication : publications) {

System.out.println(publication.getTitle());

}

October 2, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Updating Objects

 Update procedure for persistent object
 retrieve desired object from the database

 perform the required changes and modification

 store object back to the database by calling the store method

 Background
 db4o uses IDs to maintain connections between in-memory objects

and corresponding stored objects

 IDs are cached as weak references until database is closed

 fresh reference is required to update objects

 querying for objects ensures fresh reference

 creating and storing objects ensures fresh reference

 db4o uses reference to find and update stored object automatically
when store method is called

October 2, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Updating Objects

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieve existing object

Author michael = db.queryByExample(new Author("Michael Grossniklaus")).next();

// update object in memory

Calendar calendar = Calendar.getInstance();

calendar.set(1976, Calendar.JUNE, 22);

michael.setBirthday(calendar.getTime());

// update persistent object

db.store(michael);

October 2, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Deleting Objects

 Similar to updating objects
 fresh reference required

 established by querying or by creating and storing

 Method delete of ObjectContainer removes objects

 What happens to referenced objects?

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving author "Moira C. Norrie"

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next();

// deleting author "Moira C. Norrie"

db.delete(moira);

October 2, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Simple Structured Objects

 Storing of new objects using the store method

 object graph is traversed and all referenced objects are stored

 persistence by reachability

 Updating of existing objects using the store method

 by default update depth is set to one

 only primitive and string values are updated

 object graph is not traversed for reasons of performance

 Deleting existing objects using the delete method

 by default delete operations are not cascaded

 referenced objects have to be deleted manually

 cascading delete can be configured for individual classes

October 2, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Updating Simple Structured Objects

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving author "Moira C. Norrie"

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next();

// updating all publications

for (Publication publications: moira.getPublications()) {

publication.setYear(2007);

}

// storing author "Moira C. Norrie" has no effect on publications

db.store(moira);

// storing updated publications

for (Publication publications: moira.getPublications()) {

db.store(publication);

}

October 2, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Updating Simple Structured Objects

 Cascading updates can be configured per class using
method cascadeOnUpdate from ObjectClass

 Update depth can be configured
 method store(object, depth) from ExtObjectContainer

updates referenced fields to the given depth

 method updateDepth(depth) from ObjectClass defines a
sufficient update depth for a class of objects

 method updateDepth(depth) from Configuration sets global
update depth for all persisted objects

 Global update depth not flexible enough for real-world

objects having different depth of reference structures

October 2, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Deleting Simple Structured Objects

 Cascading deletes similar to cascading updates
 configured per object class

 method objectClass from CommonConfiguration

 method cascadeOnDelete from ObjectClass

 What happens if deleted objects referenced elsewhere?

// configuration of cascading deletes for Author objects

EmbeddedConfiguration config = Db4oEmbedded.newConfiguration();

config.common().objectClass(Author.class).cascadeOnDelete(true);

ObjectContainer db = Db4oEmbedded.openFile(config, "test.db");

// retrieving author "Moira C. Norrie"

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next();

// deleting author "Moira C. Norrie"

database.delete(moira);

October 2, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Deleting Simple Structured Objects

 Inconsistencies between in-memory and stored objects
 cache and disk can become inconsistent when deleting objects

 method refresh of ExtObjectContainer syncs objects

 restores memory objects to committed values on disk

delete() refresh()

October 2, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Object Hierarchies

 db4o handles complex object structures automatically
 hierarchies, composite hierarchies

 inverse associations

 inheritance and interfaces

 multi-valued attributes, arrays and collections

 Configuration of cascading operation applies

 db4o database-aware collections
 ArrayList4 and ArrayMap4 implement Collections API

 as part of transparent persistence/activation framework

 ActivatableArrayList, ActivatableHashMap, …

 complex object implementation becomes db4o dependant

October 2, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Transparent Persistence

 Make persistence transparent to application logic
 store objects in database once using the store method

 avoid more calls to store method as database manages objects

 Logic of the transparent persistence framework
 transparently persistent objects implement Activatable interface

 instances are initially made persistent using store method

 objects are bound to the transparent persistence framework when
stored or retrieved using the bind method

 upon commit, the transparent persistence framework scans for
modified persistent objects and implicitly invokes the store method

 Enabling transparent persistence

October 2, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

config.add(new TransparentPersistenceSupport());

Activation

 Activation controls instantiation of object fields
 object field values are loaded into memory only to a certain depth

when a query retrieves objects

 activation depth denotes the length of the reference chain from an
object to another

 fields beyond the activation depth are set to null for object references
or to default values for primitive types

 Activation occurs in the following cases
 method next is called on an ObjectSet retrieved in a query

 explicit object activation by activate from ObjectContainer

 a db4o collection element is accessed

 members of Java collections are activated automatically when
collection is activated

October 2, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Activation

addr oid

 Fields beyond activation depth

are not loaded into memory

 Weak references are used to

later activate these fields

 table instead of direct reference

 memory address mapped to persistent

id of inactive object

 Inactive objects are activated

using mapping table

Activation Depth

October 2, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Activation

 Activation depth trade-off
 if set to maximum, whole object graphs are loaded into memory for

every retrieved object and no manual activation needed

 if set to minimum, memory consumption is reduced to the lowest
level but all the activation logic is left to the application code

 Controlling activation
 default activation depth is 5

 methods activate and deactivate of ObjectContainer

 per class configuration

ObjectClass#minimumActivationDepth(minDepth)

ObjectClass#maximumActivationDepth(maxDepth)

ObjectClass#cascadeOnActivate(bool)

ObjectClass#objectField(...).cascadeOnActivate(bool)

October 2, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Transparent Activation

 Make activation transparent to application logic
 activate fields automatically when they are accessed

 ease maintenance of multi-level activation strategies

 Logic of the transparent activation framework
 transparently activated objects implement Activatable interface

 when an object is instantiated, the database registers itself with the
object using the bind method

 instances are not activated automatically

 upon access the activate method is used to check whether the
field has been activated and, if not, load the value

 Enabling the transparent activation framework

October 2, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

config.add(new TransparentActivationSupport());

Transparent Persistence and Activation Example

public class Author implements Activatable {

// activator

transient Activator activator;

...

public Author(...) {

...

}

// read activation

public Date getBirthday() {

this.activate(ActivationPurpose.READ);

return this.birthday;

}

// write activation

public void setBirthday(Date birthday) {

this.activate(ActivationPurpose.WRITE);

this.birthday = birthday;

}

October 2, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

// field activation

public void activate(ActivationPurpose p) {

if (this.activator == null) {

return;

}

this.activator.activate(p);

}

// bind instance to the framework

public void bind(Activator a) {

if (this.activator == a) {

return;

}

if (a != null && this.activator != null) {

throw new IllegalStateException();

}

this.activator = a;

}

...

}

 Automatic code insertion through bytecode instrumentation

db4o Transactions

 ACID transaction model

 Data transaction journaling
 zero data loss in case of system failure

 automatic data recovery after system failure

 db4o core is thread-safe for “simultaneous” interactions
 core operates in single-thread mode

 All work within db4o ObjectContainer is transactional

 transaction started implicitly when container opened

 current transaction committed implicitly when container closed

 explicit commit using method commit of ObjectContainer

 explicit abort using method rollback of ObjectContainer

October 2, 2009 29Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Database Commit

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving author "Moira C. Norrie"

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next();

// creating author "Stefania Leone"

Author stefania = new Author("Stefania Leone");

// creating new publication

Publication article = new Publication("Web 2.0 Survey");

article.addAuthor(stefania);

article.addAuthor(moira);

// storing publication

db.store(article);

// committing database

db.commit();

October 2, 2009 30Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Database Rollback

 Modifications are written to temporary memory storage

 Implicit or explicit commit writes the modifications to disk

 Database rollback resets last committed database state

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving publication

Publication article =

db.queryByExample(new Publication("Web 2.0 Survey")).next();

// updating publication

Author michael = new Author("Michael Grossniklaus");

article.addAuthor(michael);

db.store(article);

// aborting transaction

db.rollback();

October 2, 2009 31Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Database Rollback

 Again, inconsistencies of memory and disk possible
 method rollback cancels modifications on disk

 state of the objects in reference cache is not adapted

 live objects need to be refreshed explicitly

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving publication

Publication article =

db.queryByExample(new Publication("Web 2.0 Survey")).next();

// updating publication

Author michael = new Author("Michael Grossniklaus");

article.addAuthor(michael);

db.store(article);

// aborting transaction

db.rollback();

// refreshing article to remove author from in-memory representation

db.ext().refresh(article, Integer.MAX_VALUE);

October 2, 2009 32Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Concurrent Transactions

 Digression on isolation levels
 read uncommitted: values modified by other transactions can be

read before they are committed

 read committed: only values that have been modified and
committed by other transactions can be read

 repeatable read: all read operations within a transaction yield the
same result

 serialisable: database state resulting from concurrent execution of
transactions could have been obtained from a possible serial
execution of the same transactions

 db4o uses the read committed isolation level

 Inconsistencies and collisions can occur!

October 2, 2009 33Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Collision Detection

 Check if object has changed during transaction before

committing a transaction
 store value of object in local variable at transaction start

 use peekPersisted method of ExtObjectContainer to look at
the persistent version of the object

 compare initial value to stored value

 rollback current transaction if value has changed

 Method peekPersisted returns a transient object that

has no connection to the database
 instantiation depth of transient object can be configured

 method can be used to read either committed or stored values

October 2, 2009 34Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Collision Detection

ObjectContainer db =

Db4oClientServer.openClient("localhost", 3927, "...", "...");

// retrieving author "Moira Norrie"

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next();

// storing initial value of field

Date birthday = moira.getBirthday();

...

// retrieve stored value of field

Author persisted = db.ext().peekPersisted(moira, 9, true);

// compare the values and abort if necessary

if (persisted.getBirthday() != birthday) {

db.rollback();

} else {

db.commit();

}

October 2, 2009 35Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Collision Avoidance with Semaphores

 Avoid collisions by locking objects explicitly

 Semaphores can be used protect critical code sections
 a unique name must be provided

 time to wait if a semaphore is already owned by another transaction
has to be given

 Semaphores form basis to implement custom locking

ObjectContainer db =

Db4oClientServer.openClient("localhost", 3927, "...", "...");

if (db.ext().setSemaphore("SEMAPHORE#1", 1000)) {

// critical code section

...

// release semaphore after critical section

db.ext().releaseSemaphore("SEMAPHORE#1");

}

October 2, 2009 36Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Literature

 db4o Tutorial
 http://www.db4o.com/about/productinformation/resources/

 db4o Reference Documentation
 http://developer.db4o.com/Resources/view.aspx/Reference

 db4o API Reference
 http://developers.db4o.com/resources/api/db4o-java/

 Jim Paterson, Stefan Edlich, Henrik Hörning, and Reidar

Hörning: The Definitive Guide to db4o, APress 2006

October 2, 2009 37Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Next Week
db4o: Part 2

• Configuration and Tuning, Distribution and Replication

• Schema Evolution: Refactoring, Inheritance Evolution

• Callbacks and Translators

October 2, 2009 38Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

