
Object-Oriented Databases
db4o: Part 1 

• Managing Databases, Storing and Retrieving Objects

• Query by Example, Native Queries, SODA

• Simple and Complex Objects, Activation, Transactions
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Introducing db4o

 Open source native object database for Java and .NET 

 Key features
 No conversion or mapping needed

 No changes to classes to make objects persistent

 One line of code to store objects of any complexity

 Works in local or client/server mode

 ACID transaction model

 Object caching and integration with native garbage collection

 Automatic management and versioning of database schema 

 Seamless Java or .NET language binding 

 Small memory foot-print (single 2Mb library)
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db4o Architecture
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List<Author> authors = db.query(

new Predicate<Author>() {

public boolean match(Author author) {

return author.getName().startsWith("M");

}

}

);
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Example Class Hierarchy

+getName(): String

+setName(name: String)

+getBirthday(): Date

+setBirthday(birthday: Date)

+getAge(): int

name: String

birthday: Date

Author

+getTitle(): String

+setTitle(title: String)

+getYear(): int

+setYear(year: int)

title: String

year: int

Publication

+getBeginPage(): int

+setBeginPage(page: int)

+getEndPage(): int

+setEndPage(page: int)

beginPage: int

endPage: int

Article

+getPrice(): double

+setPrice(price: double)

price: double

Book

0..* 0..*
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Example Java Classes

public class Author {

private String name;

private Date birthday;

private Set<Publication> pubs;

public Author(String name) {

this.name = name;

this.pubs = 

new HashSet<Publication>();

}

public String getName() {

return this.name;

}

public void setName(String name) {

this.name = name;

}

...

}

public class Publication {

private String title;

private int year;

private List<Author> authors;

public Publication(String title) {

this.title= title;

this.authors = 

new ArrayList<Author>();

}

public String getTitle() {

return this.title;

}

public void setTitle(String title) {

this.title = title;

}

...

}
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Object Container

 Represents db4o databases

 supports local file mode or client connections to db4o server

 Owns one transaction
 all operations are executed transactional

 transaction is started when object container is opened

 after commit or rollback next transaction is started automatically

 Manages links between stored and instantiated objects 
 manages object identities

 loading, updating and unloading of objects

 Lifecycle
 intended to be kept open as long as programs work against it

 references to objects in RAM will be discarded when closed
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Storing Objects

// create a publication

Publication article = new Publication("Concepts for Content Management");

// create authors

Author michael = new Author("Michael Grossniklaus");

Author moira = new Author("Moira C. Norrie");

// assign authors to publication

article.addAuthor(michael);

article.addAuthor(moira);

// store complex object

ObjectContainer db = Db4oEmbedded.openFile("test.db");

db.store(article);

 Store objects with method store of ObjectContainer

 Stores objects of arbitrary complexity

 Persistence by reachability
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Retrieving Objects

 db4o supports three query languages

 Query by Example
 simple method based on prototype objects

 selects exact matches only

 Native Queries
 expressed in application programming language

 type safe

 transformed to SODA and optimised

 Simple Object Data Access (SODA)
 query API based on the notion of a query graph

 methods for descending graph and applying constraints
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Query by Example

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// get author "Moira C. Norrie"

Author proto = new Author("Moira C. Norrie");

ObjectSet<Author> authors = db.queryByExample(proto);

for (Author author: authors) {

System.out.println(author.getName());

}

// get all publications

ObjectSet<Publication> publications = db.query(Publication.class);

for (Publication publication: publications) {

System.out.println(publication.getTitle());

}
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Native Queries

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// find all publications after 1995

ObjectSet<Publication> publications = db.query(

new Predicate<Publication>() {

public boolean match(Publication publication) {

return publication.getYear() > 1995;

}

}

);

for (Publication publication: publications) {

System.out.println(publication.getTitle());

}
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SODA Queries

 Expressed using Query objects
 descend adds or traverses a node in the query tree

 constrain adds a constraint to a node in the query tree

 sortBy sorts the result set

 orderAscending and orderDescending

 execute executes the query

 Interface Constraint
 greater and smaller comparison modes

 identity, equal and like evaluation modes

 and, or and not operators

 startsWith and endsWith string comparisons

 contains to test collection membership
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SODA Queries

 Find all publications published after 1995

 Find all publications of author "Moira C. Norrie"

Class: Publication.class

"year"

Greater: 1995

Class: Publication.class

"authors"

Contains: new Author("Moira C. Norrie")
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SODA Queries

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// find all publications after 1995

Query query = db.query();

query.constrain(Publication.class);

query.descend("year").constrain(Integer.valueOf(1995)).greater();

ObjectSet<Publication> publications = query.execute();

for (Publication publication : publications) {

System.out.println(publication.getTitle());

}

// find all publications of author "Moira C. Norrie"

Query query = db.query();

query.constrain(Publication.class);

Author proto = new Author("Moira C. Norrie");

query.descend("authors").constrain(proto).contains();

ObjectSet<Publication> publications = query.execute();

for (Publication publication : publications) {

System.out.println(publication.getTitle());

}
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Updating Objects

 Update procedure for persistent object 
 retrieve desired object from the database

 perform the required changes and modification

 store object back to the database by calling the store method

 Background
 db4o uses IDs to maintain connections between in-memory objects 

and corresponding stored objects

 IDs are cached as weak references until database is closed

 fresh reference is required to update objects

 querying for objects ensures fresh reference

 creating and storing objects ensures fresh reference

 db4o uses reference to find and update stored object automatically 
when store method is called
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Updating Objects

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieve existing object 

Author michael = db.queryByExample(new Author("Michael Grossniklaus")).next();

// update object in memory

Calendar calendar = Calendar.getInstance();

calendar.set(1976, Calendar.JUNE, 22);

michael.setBirthday(calendar.getTime());

// update persistent object 

db.store(michael);
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Deleting Objects

 Similar to updating objects
 fresh reference required

 established by querying or by creating and storing

 Method delete of ObjectContainer removes objects

 What happens to referenced objects?

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving author "Moira C. Norrie"

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next(); 

// deleting author "Moira C. Norrie"

db.delete(moira);
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Simple Structured Objects

 Storing of new objects using the store method

 object graph is traversed and all referenced objects are stored

 persistence by reachability

 Updating of existing objects using the store method

 by default update depth is set to one

 only primitive and string values are updated

 object graph is not traversed for reasons of performance

 Deleting existing objects using the delete method

 by default delete operations are not cascaded

 referenced objects have to be deleted manually

 cascading delete can be configured for individual classes
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Updating Simple Structured Objects

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving author "Moira C. Norrie"

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next();

// updating all publications

for (Publication publications: moira.getPublications()) {

publication.setYear(2007);

}

// storing author "Moira C. Norrie" has no effect on publications

db.store(moira);

// storing updated publications

for (Publication publications: moira.getPublications()) {

db.store(publication);

}
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Updating Simple Structured Objects

 Cascading updates can be configured per class using 
method cascadeOnUpdate from ObjectClass

 Update depth can be configured
 method store(object, depth) from ExtObjectContainer

updates referenced fields to the given depth

 method updateDepth(depth) from ObjectClass defines a 
sufficient update depth for a class of objects

 method updateDepth(depth) from Configuration sets global 
update depth for all persisted objects

 Global update depth not flexible enough for real-world 

objects having different depth of reference structures
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Deleting Simple Structured Objects

 Cascading deletes similar to cascading updates
 configured per object class

 method objectClass from CommonConfiguration

 method cascadeOnDelete from ObjectClass

 What happens if deleted objects referenced elsewhere?

// configuration of cascading deletes for Author objects

EmbeddedConfiguration config = Db4oEmbedded.newConfiguration();

config.common().objectClass(Author.class).cascadeOnDelete(true);

ObjectContainer db = Db4oEmbedded.openFile(config, "test.db");

// retrieving author "Moira C. Norrie" 

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next();

// deleting author "Moira C. Norrie" 

database.delete(moira);
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Deleting Simple Structured Objects

 Inconsistencies between in-memory and stored objects
 cache and disk can become inconsistent when deleting objects

 method refresh of ExtObjectContainer syncs objects

 restores memory objects to committed values on disk

delete() refresh()
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Object Hierarchies

 db4o handles complex object structures automatically
 hierarchies, composite hierarchies

 inverse associations

 inheritance and interfaces

 multi-valued attributes, arrays and collections

 Configuration of cascading operation applies

 db4o database-aware collections
 ArrayList4 and ArrayMap4 implement Collections API

 as part of transparent persistence/activation framework

 ActivatableArrayList, ActivatableHashMap, …

 complex object implementation becomes db4o dependant
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Transparent Persistence

 Make persistence transparent to application logic
 store objects in database once using the store method

 avoid more calls to store method as database manages objects

 Logic of the transparent persistence framework
 transparently persistent objects implement Activatable interface

 instances are initially made persistent using store method

 objects are bound to the transparent persistence framework when 
stored or retrieved using the bind method

 upon commit, the transparent persistence framework scans for 
modified persistent objects and implicitly invokes the store method

 Enabling transparent persistence
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Activation

 Activation controls instantiation of object fields
 object field values are loaded into memory only to a certain depth 

when a query retrieves objects

 activation depth denotes the length of the reference chain from an 
object to another

 fields beyond the activation depth are set to null for object references 
or to default values for primitive types

 Activation occurs in the following cases
 method next is called on an ObjectSet retrieved in a query

 explicit object activation by activate from ObjectContainer

 a db4o collection element is accessed

 members of Java collections are activated automatically when 
collection is activated
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Activation

addr oid

 Fields beyond activation depth 

are not loaded into memory

 Weak references are used to 

later activate these fields

 table instead of direct reference

 memory address mapped to persistent 

id of inactive object

 Inactive objects are activated 

using mapping table

Activation Depth
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Activation

 Activation depth trade-off
 if set to maximum, whole object graphs are loaded into memory for 

every retrieved object  and no manual activation needed

 if set to minimum, memory consumption is reduced to the lowest 
level but all the activation logic is left to the application code

 Controlling activation
 default activation depth is 5

 methods activate and deactivate of ObjectContainer

 per class configuration

ObjectClass#minimumActivationDepth(minDepth)

ObjectClass#maximumActivationDepth(maxDepth)

ObjectClass#cascadeOnActivate(bool)

ObjectClass#objectField(...).cascadeOnActivate(bool)
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Transparent Activation

 Make activation transparent to application logic
 activate fields automatically when they are accessed

 ease maintenance of multi-level activation strategies

 Logic of the transparent activation framework
 transparently activated objects implement Activatable interface

 when an object is instantiated, the database registers itself with the 
object using the bind method

 instances are not activated automatically

 upon access the activate method is used to check whether the 
field has been activated and, if not, load the value

 Enabling the transparent activation framework
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Transparent Persistence and Activation Example

public class Author implements Activatable {

// activator

transient Activator activator;

...

public Author(...) {

...

}

// read activation

public Date getBirthday() {

this.activate(ActivationPurpose.READ);

return this.birthday;

}

// write activation

public void setBirthday(Date birthday) {

this.activate(ActivationPurpose.WRITE);

this.birthday = birthday;

}

October 2, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

// field activation

public void activate(ActivationPurpose p) {

if (this.activator == null) {

return;

}

this.activator.activate(p);

}

// bind instance to the framework

public void bind(Activator a) {

if (this.activator == a) {

return;

}

if (a != null && this.activator != null) {

throw new IllegalStateException();

} 

this.activator = a;

}

...

}

 Automatic code insertion through bytecode instrumentation



db4o Transactions

 ACID transaction model

 Data transaction journaling
 zero data loss in case of system failure 

 automatic data recovery after system failure

 db4o core is thread-safe for “simultaneous” interactions
 core operates in single-thread mode

 All work within db4o ObjectContainer is transactional

 transaction started implicitly when container opened

 current transaction committed implicitly when container closed

 explicit commit using method commit of ObjectContainer

 explicit abort using method rollback of ObjectContainer
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Database Commit

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving author "Moira C. Norrie"

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next(); 

// creating author "Stefania Leone"

Author stefania = new Author("Stefania Leone");

// creating new publication

Publication article = new Publication("Web 2.0 Survey");

article.addAuthor(stefania);

article.addAuthor(moira);

// storing publication 

db.store(article);

// committing database 

db.commit();
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Database Rollback

 Modifications are written to temporary memory storage

 Implicit or explicit commit writes the modifications to disk

 Database rollback resets last committed database state

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving publication

Publication article =

db.queryByExample(new Publication("Web 2.0 Survey")).next(); 

// updating publication

Author michael = new Author("Michael Grossniklaus");

article.addAuthor(michael);

db.store(article);

// aborting transaction 

db.rollback();
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Database Rollback

 Again, inconsistencies of memory and disk possible
 method rollback cancels modifications on disk 

 state of the objects in reference cache is not adapted

 live objects need to be refreshed explicitly

ObjectContainer db = Db4oEmbedded.openFile("test.db");

// retrieving publication

Publication article =

db.queryByExample(new Publication("Web 2.0 Survey")).next();

// updating publication

Author michael = new Author("Michael Grossniklaus");

article.addAuthor(michael);

db.store(article);

// aborting transaction 

db.rollback();

// refreshing article to remove author from in-memory representation

db.ext().refresh(article, Integer.MAX_VALUE);
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Concurrent Transactions

 Digression on isolation levels
 read uncommitted: values modified by other transactions can be 

read before they are committed

 read committed: only values that have been modified and 
committed by other transactions can be read

 repeatable read: all read operations within a transaction yield the 
same result 

 serialisable: database state resulting from concurrent execution of 
transactions could have been obtained from a possible serial 
execution of the same transactions

 db4o uses the read committed isolation level

 Inconsistencies and collisions can occur!
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Collision Detection

 Check if object has changed during transaction before 

committing a transaction
 store value of object in local variable at transaction start

 use peekPersisted method of ExtObjectContainer to look at 
the persistent version of the object

 compare initial value to stored value

 rollback current transaction if value has changed

 Method peekPersisted returns a transient object that 

has no connection to the database
 instantiation depth of transient object can be configured

 method can be used to read either committed or stored values
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Collision Detection

ObjectContainer db = 

Db4oClientServer.openClient("localhost", 3927, "...", "...");

// retrieving author "Moira Norrie"

Author moira = db.queryByExample(new Author("Moira C. Norrie")).next(); 

// storing initial value of field

Date birthday = moira.getBirthday();

...

// retrieve stored value of field 

Author persisted = db.ext().peekPersisted(moira, 9, true);

// compare the values and abort if necessary

if (persisted.getBirthday() != birthday) {

db.rollback();

} else {

db.commit();

}
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Collision Avoidance with Semaphores

 Avoid collisions by locking objects explicitly

 Semaphores can be used protect critical code sections
 a unique name must be provided

 time to wait if a semaphore is already owned by another transaction 
has to be given

 Semaphores form basis to implement custom locking

ObjectContainer db = 

Db4oClientServer.openClient("localhost", 3927, "...", "...");

if (db.ext().setSemaphore("SEMAPHORE#1", 1000)) {

// critical code section

...

// release semaphore after critical section 

db.ext().releaseSemaphore("SEMAPHORE#1");

}

October 2, 2009 36Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Literature

 db4o Tutorial
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Next Week
db4o: Part 2

• Configuration and Tuning, Distribution and Replication

• Schema Evolution: Refactoring, Inheritance Evolution 

• Callbacks and Translators
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