
Object-Oriented Databases
db4o: Part 2 

• Configuration and Tuning, Distribution and Replication

• Schema Evolution: Refactoring, Inheritance Evolution 

• Callbacks and Translators

October 9, 2009 1Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Summary: db4o Part 1

 Managing databases with an object container

 Retrieving objects
 query by example

 native queries

 SODA queries

 Updating and deleting simple and complex objects
 configuration of update, delete and activation depth

 inconsistencies between in-memory and stored objects

 transparent activation and persistence

 Transactions
 commit and rollback

 concurrent transactions, collision detection and avoidance

October 9, 2009 2Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Configuration and Tuning

 Configuration interface

 configuration obtained through
 Db4oEmbedded#newConfiguration()

 Db4oClientServer#newClientConfiguration()

 Db4oClientServer#newServerConfiguration()

 configuration set when object container, client or server opened

 further changes to configuration do not affect already opened object 
containers, clients and servers

 External tools
 performance tuning

 database diagnostics

 Indexes
 optimise query evaluation

October 9, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Configuration Interface

 Represented by CommonConfiguration,

Configuration and their subclasses

 Methods rather than properties files

 Configuration setting groups
 object-related methods

 file-related methods

 reflection-related methods

 communication-related methods

 logging-related methods

 miscellaneous configuration methods

 Configuring an existing object container or object server
 access settings with ExtObjectContainer#configure() or 
ExtObjectServer#configure(), respectively

October 9, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



External Tools

 Defragment
 removes unused fields and management information

 compacts database file and provides faster access

 initiated from command line or from within application

 Statistics
 computes and outputs statistics about a database file

 executed from command line or programmatically

 Logger
 logs all objects in a database file

 logs all objects of a given class

 run from command line

October 9, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Indexes

 Trade-off between increased query performance and 

decreased storage, update and delete performance

 Support for B-Tree indexes on single object fields
 enabled or disabled using configuration interface

 internal field i_indexed is set to true or false for indexed field

 index created or removed automatically when object container or 
object server is opened

 Example

// create an index

CommonConfiguration#objectClass(...).objectField(...).indexed(true);

// remove an index

CommonConfiguration#objectClass(...).objectField(...).indexed(false);

October 9, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Tuning for Speed

 Heuristics to improve performance of db4o
 weak references, BTree node size, freespace manager, locking, 

flushing, callbacks, caches, …

 Object loading
 use appropriate activation depth

 use multiple object containers

 disable weak references if not required (no updates performed)

 Database tests
 disable detection of schema changes

 disable instantiation tests of persistent classes at start-up

 Query evaluation
 set field indexes on most used objects to improve searches

 optimise native queries

October 9, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Distribution and Replication

 Embedded mode
 database accessed by clients in the same virtual machine

 direct file access: one user and one thread at a time

 client session: one user and multiple threads

 Client/Server mode
 clients in multiple virtual machines access database on server

 server listens for and accepts connections

 clients connect to server to perform database tasks

 Replication
 multiple servers manage redundant copies of a database

 changes are replicated from master to client servers

 replicated databases need to be kept consistent

October 9, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Embedded Mode: Direct File Access

 Application and database in the same virtual machine

 Database file opened, locked and accessed directly
 Db4oEmbedded.openFile(config, name)

 database operations performed on embedded object container

 Single user and single thread

Database File
EmbeddedObjectContainer

Virtual Machine

October 9, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Embedded Mode: Client Session

 Application and database in same virtual machine

 Database file accessed through client session
 EmbeddedObjectContainer#openSession()

 database operation performed on session object container

 Single user and multiple threads

Database File
EmbeddedObjectContainer

Virtual Machine

October 9, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

ObjectContainer

ObjectContainer

ObjectContainer

Client Sessions



Client/Server Modes: Networking Mode

 Client opens TCP/IP connection to server
 Db4oClientServer.openServer(filename, port)

 Db4oClientServer.openClient(host, port, user, pass)

 Client sends query, insert, update and delete instructions 

to server and receives data from the server

Database File
ObjectServer

Virtual Machine

ObjectContainer

ObjectContainer

ObjectContainer

Database Operations

October 9, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Client/Server Modes: Out-of-Band Signalling

 Basic client/server mode cannot transmit commands
 operations are limited to methods of ObjectContainer

 Out-of-band signalling
 MessageSender#send(object)

 MessageRecipient#processMessage(context, message)

Database File

ObjectServer

Server Machine

Database Operations 

and Commands

MessageRecipient

processMessage

ObjectContainer

Client Machine

MessageSender

sendMessage

October 9, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Replication

 Database managed by redundant servers
 data changes on masters or publishers

 changes replicated to clients of subscribers

 Several forms of replication supported
 snapshot replication

 transactional replication

 merge replication

 Replication in db4o has to be coded into application and 

cannot be configured on an administrative level
 replication only occurs on demand, i.e. not automatically

 client/master semantics introduced by developer

 db4o provides one interface to support all forms of replication

October 9, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Replication Modes: Snapshot Replication

 Snapshots of the master database replicated to client
 state-based

 periodical schedule

 Support in db4o
 special SODA query to detect all new and updated objects

Master

Client

Client

Client

Client

October 9, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Replication Modes: Transactional Replication

 Changes are synchronised after transaction
 operation based

 changes are replicated immediately

 Support in db4o
 single object replication with ReplicationSession

Master

Client

Client

Client

Client

October 9, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Replication Modes: Merge Replication

 Changes from client are merged to central server

 Other clients are updated to reflect changes

 Can be done either transactionally or on a periodic basis

 Typically occurs if subscribers are occasionally offline

Master

Client

Client

Client

Client

October 9, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



db4o Replication System

 Introduced in db4o version 5.1

 Replication solution separated from db4o core
 bridges divide between db4o and relational databases

 uni- or bidirectional replication

 replication of relational databases based on Hibernate

 Transfers data between replication providers

 Supported replication providers
 db4o to db4o

 db4o to Hibernate, Hibernate to db4o

 Hibernate to Hibernate

October 9, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



db4o Replication System

 Requires three steps
 generating unique IDs and version numbers

 creating a ReplicationSession object

 replicating objects

 Replication mode is dependent on implementation

 Replication is bidirectional by default
 replication can be configured to be unidirectional using method 
ReplicationSession#setDirection(from, to)

 on ReplicationSession#replicate(object) newer version 
of object will be transferred to the database with older version

 Replication has object granularity
 also traverses new or changed members in object graph

October 9, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



db4o Replication System

// configuration

EmbeddedConfiguration config = Db4oEmbedded.newConfiguration();

config.file().generateUUIDs(ConfigScope.GLOBALLY);

config.file().generateVersionNumbers(ConfigScope.GLOBALLY);

ObjectContainer db1 = Db4oEmbedded.openFile(config, "test1.db");

ObjectContainer db2 = Db4oEmbedded.openFile(config, "test2.db");

// replication session

ReplicationSession replication = Replication.begin(db1, db2,

new ReplicationEventListener() {

public onReplicate(ReplicationEvent e) {

if (e.isConflict()) {

e.overrideWith(e.stateInProviderA());

}

}

}

);

replication.setDirection(db1, db2);

October 9, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



db4o Replication System

// update database and replicate (transactional replication) 

Author stanzetta = new Author("Christoph Zimmerli");

db1.store(stanzetta);

replication.replicate(stanzetta);

replication.commit();

// replicate changed publications (snapshot replication)

ReplicationProvider provider1 = replication.providerA();

ObjectSet<Publication> result = 

provider1.objectsChangedSinceLastReplication(Publication.class);

for (Publication publication: result) {

replication.replicate(publication);

}

replication.commit();

// close the replication session

replication.close();

October 9, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Schema Evolution

 Class definitions and inheritance structure can change
 additional application requirements

 software refactoring

 Class definitions and hierarchy are database schema

 In object-oriented databases schema evolution is simpler 

than in object-relational mappings as only one data model 

exists
C

OODBMS

C C C

RDBMS

C C

TTT

October 9, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Refactoring Scenarios

 Changes to interface implemented by class
 supported as db4o only stores data and not implementations

 Removing a field
 new objects stored in new format

 additional field ignored in objects stored in old format

 Adding a field
 new objects stored in new format

 additional field set to null in objects stored in old format

 Changing the type of a field
 simply stored as a new field

 manual migration if old and new type incompatible

October 9, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Refactoring Scenarios

 Renaming a field
 old field is deleted and a new inserted

 data migration through configuration interface

 Renaming a class
 managed through configuration interface

 Merging fields

 Splitting fields manual using a helper program

 Moving fields

CommonConfiguration#objectClass(...).objectField(...).rename(...);

CommonConfiguration#objectClass(...).rename(...);

October 9, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Inheritance Evolution

 Refactoring of inheritance structure
 deleting classes from inheritance hierarchy

 inserting classes into inheritance hierarchy

 swap classes in inheritance hierarchy

 Tools for inheritance evolution are being developed
 create a type-less transfer database 

 switch classpath manually

October 9, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Callbacks

 Set of methods called in response to events (triggers)

 db4o events
 activate and deactivate

 new, update and delete

 Methods called before and after event
 methods starting with can called before event

 methods starting with on called after event

 Methods defined by interface ObjectCallbacks

 interface does not have to be implemented explicitly by persistent 
class to use its functionality

 any number of methods can be implemented by persistent class

October 9, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Callbacks

package com.db4o.ext;

public interface ObjectCallbacks {

public boolean objectCanActivate(ObjectContainer c);

public boolean objectCanDeactivate(ObjectContainer c);

public boolean objectCanDelete(ObjectContainer c);

public boolean objectCanNew(ObjectContainer c);

public boolean objectCanUpdate(ObjectContainer c);

public void objectOnActivate(ObjectContainer c);

public void objectOnDeactivate(ObjectContainer c);

public void objectOnDelete(ObjectContainer c);

public void objectOnNew(ObjectContainer c);

public void objectOnUpdate(ObjectContainer c);

}

October 9, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Use Cases for Callbacks

 Recording or preventing updates
 methods canUpdate() and onUpdate()

 Setting default values after refactoring
 get values before update using method canNew()

 Checking object integrity before storing objects
 check field values using methods canNew() and canUpdate()

 Setting transient fields

 Restoring connected state when objects activated
 display graphical elements or restore network connections

 Creating special indexes
 detect if a field is queried often and create index automatically

October 9, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Controlling Object Instantiation

 No convention imposed for persistent classes by db4o

 Objects are instantiated using one of three techniques
 using a constructor

 bypassing the constructor

 using a translator

 For certain classes it is important which of these methods 

is used to retrieve objects
 if available, bypassing the constructor is default setting

 behaviour can be configured globally or per class

October 9, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Using Constructors

 db4o can use a constructor to instantiate objects
 if no default public constructor is present, all available constructors 

are tested to create instances of a class

 null or default values passed to all constructor arguments

 first successfully tested constructor is used throughout session

 if instance of a class cannot be created, the object is not stored

 Settings adjusted through configuration interface

// global setting (default: depends on environment)

CommonConfiguration#callConstructors(true)

// per class setting (default: depends on environment)

CommonConfiguration#objectClass(...).callConstructors(true)

// exceptions for debugging (default: true)

CommonConfiguration#exceptionsOnNotStorable(true)

October 9, 2009 29Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Using Constructors

public class Person {

Date birthdate;

transient Calendar today;

public Person(Date birthdate) {

this.birthdate = birthdate;

// get today's date and store it in a transient field

this.today = Calendar.getInstance();

}

public int getAge() {

Calendar birth = Calendar.getInstance();

birth.setTime(this.birthdate);

// NullPointerException in the next line if constructor not called! 

int years = this.today.get(Calendar.YEAR) – birth.get(Calendar.YEAR);

int diff = birth.add(Calendar.YEAR, age);

return (today.before(birth)) ? age-- : age;

} 

}

October 9, 2009 30Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Bypassing Constructors

 Constructors that cannot handle null or default values must 

be bypassed

 db4o uses platform-specific mechanisms to bypass 

constructors

 Not all environments support this feature
 Sun Java Virtual Machine (only JRE 1.4 and above)

 Microsoft .NET Framework (except Compact Framework)

 Default setting if supported by current environment

 Breaks classes that rely on constructors being executed

October 9, 2009 31Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Bypassing Constructors

public class Person {

Calendar birthdate;

int age;

public Person(Calendar birthdate) {

this.birthdate = birthdate;

// calculate age

Calendar today = Calendar.getInstance();

// NullPointerException in next line if called with null value!

int years = today.get(Calendar.YEAR) –

this.birthdate.get(Calendar.YEAR);

int diff = birth.add(Calendar.YEAR, age);

this.age = (today.before(birth)) ? age-- : age;

}

...

}

October 9, 2009 32Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Translators

 Some classes cannot be cleanly reinstantiated by db4o 

using either method
 constructor needed to populate transient members

 constructor fails if called with null or default values

 Translators control loading and storing of such objects
 Interface ObjectTranslator

 Interface ObjectConstructor extends ObjectTranslator

public Object onStore(ObjectContainer c, Object appObject);

public void onActivate(

ObjectContainer c, Object appObject, Object storedObject);

public Class storedClass();

public Object onInstantiate(

ObjectContainer c, Object storedObject);

October 9, 2009 33Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Translators

public class Person {

String name;

Calendar birthdate;

transient int age;

public Person(String name, Calendar birthdate) {

this.name = name;

this.birthdate = birthdate;

Calendar today = Calendar.getInstance();

int years = today.get(Calendar.YEAR) –

this.birthdate.get(Calendar.YEAR);

int diff = birth.add(Calendar.YEAR, age);

this.age = (today.before(birth)) ? age-- : age;

}

public String getName() { ... }

public Calendar getBirthdate() { ... }

public int getAge() { ... }

...

}

October 9, 2009 34Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Translators

public class PersonTranslator implements ObjectConstructor {

// map Person object to storage representation

public Object onStore(ObjectContainer c, Object appObject) {

Person person = (Person) appObject;

return new Object[] { person.getName(), person.getBirthdate() };

}

// reconstruct Person object from storage representation

public Object onInstantiate(ObjectContainer c, Object storedObject) {

Object[] raw = (Object[]) storedObject;

return new Person((String) raw[0], (Calendar) raw[1]);

}

public void onActivate(ObjectContainer c, Object appObject,

Object storedObject) { }

// return metadata about storage representation

public Class storedClass() {

return Object[].class;

}

}

October 9, 2009 35Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

CommonConfiguration#objectClass(Person.class).translate(

new PersonTranslator())



Type Handlers

 Instead of Translators

October 9, 2009 36Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Literature

 db4o Tutorial
 http://www.db4o.com/about/productinformation/resources/

 db4o Reference Documentation
 http://developer.db4o.com/Resources/view.aspx/Reference

 db4o API Reference
 http://developer.db4o.com/resources/api/db4o-java/

 http://developer.db4o.com/resources/api/dRS-java/

 Jim Paterson, Stefan Edlich, Henrik Hörning, and Reidar

Hörning: The Definitive Guide to db4o, APress 2006

October 9, 2009 37Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch



Next Week
Version Models

• Temporal Databases

• Engineering Databases

• Software Configuration Systems

October 9, 2009 38Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch


