
Object-Oriented Databases
Commercial OODBMS: Objectivity/DB

• Objectivity/DB for .NET

• Logical Storage Model: Federated Databases

• Language Integrated Queries (LINQ)

November 20, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 1

Objectivity/DB

 Object-oriented database management system
 developed since 1993 by Objectivity, Inc. (founded 1988)

 version 9.4 released in February 2008

 version 10.0 to be released in early 2010

 Database core implemented in C++

 Front-end language support
 C++, C#, Java, Smalltalk, Python, SQL++, and XML

 Platform Support
 Windows, Linux, Solaris, HP-UX, IBM RS/6000, Altix

 both 32 bit and 64 bit platforms are supported

 Cloud computing option available
 based on the Amazon AWS EC2 and other cloud computing

platforms

November 20, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 2

Typical Customers

 Telecommunications

 Nortel, Ericsson

 Financial services

 AWD, Cuna Mutual Group

 Medical systems

 Dräger Medical, LMS Medical

 Process management

 Emerson, Metso Automation, Nec,

Siemens

 Security and defense

 Northrop Grumman, Raytheon

 Energy

 Furgo Jason, Schlumberger

 Information technology

 WebLOQ, Ciena

 Research

 NASA, CERN, SLAC, Los Alamos

National Laboratory, Fermilab

November 20, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Client Application

Objectivity Product Family

Objectivity/DB

Database Servers

F
a
u
lt
 T

o
le

ra
n
t

O
p
ti
o
n

S
Q

L
+

+

J
a
v
a

C
+

+

A
d
m

in
is

tr
a
ti
o
n

T
o
o
ls

ODBC

Driver

S
m

a
llt

a
lk

D
a
ta

 R
e
p
lic

a
ti
o
n

O
p
ti
o
n

November 20, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 4

C
#

P
y
th

o
n

X
M

L

Architecture Overview

November 20, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

C
li
e
n

t
S

id
e

S
e
rv

e
r

S
id

e

Data
Server

DatabaseDatabase

Local

Cache

C
lie

n
t
A

p
p
lic

a
ti
o
n

Query
Server

Lock
Server

Filter Gateway

L
a

n
g

u
a

g
e

In
te

rf
a
c
e
s

N
e
tw

o
rk

 a
n
d
 E

v
e
n
t

Q
u
e
ry

 a
n
d

In
d

e
x

S
to

ra
g
e
 a

n
d

T
ra

n
s
a
c
ti
o
n

O
b
je

c
t
a
n
d
 S

c
h
e
m

a

T
a
s
k

S
p
lit

te
r

Journal

Architecture

 Scalability and availability
 simple and distributed servers process

 data, query, and lock servers

 Customisable parallel query engine (PQE)
 task splitter aims queries at specific databases and containers

 filters can run complex qualification methods

 gateways can access other databases or search engines

 replaceable components for smarter optimization

 Performance advantages
 efficient storage and navigation of relationships

 clustering and multi-dimensional indexing

 scalable collections

 client-side caching

November 20, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Logical Storage Model

Federated Database

User-Defined Database

Default ContainersUser-Defined Containers

Basic
Objects

November 20, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 7

Physical Components of a Federation

 Federation

 Schema

 Database Catalog

 Container Catalog

 Page Map

e.g. publications.fdb

e.g. PublicationsDB.

publications.DB

page map in each

container maps logical

pages to physical pages

Federation

Database

Container

Objects

File

Files

Pages

Slots

Logical Physical

1 n

1 n

1

n

1

n

1

n

November 20, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Databases

 Databases are files
 contain objects in containers

 default name is name.federation.DB

 up to 65530 databases per federation

 databases hold up to 65530 containers

 Can be moved or copied to any disk or machine
 databases can be close to clients using them for best performance

 databases can be distributed to maximize parallelism

 Can be as large as the operating system will allow

 Can be marked read-only or taken off-line

November 20, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Containers

 Containers are collections of objects in a database
 contained objects can be of any size or type

 have a logical size in pages which can grow up to 65530 pages

 Very useful for logical partitions
 by owner Moira’s books and articles

 by attribute publications from 1990 to 2000

 by time authors entered yesterday

 by edition e.g. a document with chapters, paragraphs, sentences,
images etc.

 Unit of locking
 one writer

 multiple readers

November 20, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Pages

 Both logical and physical
 logical page is permanent part of the object id (OID)

 physical page is where in the file the page is put

 Default size per federation
 Objectivity allows different page sizes for databases

 default of 8K bytes, can be as large as 64K

 each page contains 12 bytes of housekeeping

 each object has an overhead of 14 bytes: 6 for the slot, 4 for the
method pointer and 4 for the dynamic relationship slot

 “large” objects or VArrays can occupy multiple physical pages

 Unit of transfer from disk or page server to cache

November 20, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Application Space

Objectivity Federation

Pages

Memory Cache Pages

Objectivity Containers

(with pages)

Example Page

Page Header

(32 bytes)

Slot housekeeping

(6 bytes per slot)

November 20, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Database FileDatabase File

C# Code

Author a = new Author();

Managed C++ Code

ooHandle(...)

objects

Logical and Physical Pages

 When a page is modified

 a new (defragmented) page is written

to container, but the old page is kept

 a journal file is written containing

current page map

 When a transaction commits

 the page map is updated and written

to disk

 old page is returned to “free page list”

 journal file is truncated

 lock is removed on the lock server

 If a transaction aborts

 new page is returned to “free page list”

 lock is removed from lock server

ContainerPage Map

November 20, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Logical Physical

1 1

2 2

3 3

4 4

5 5

6 10

7 15

8 9

9 21

C# Development Process

 Prerequisites
 install Microsoft Visual Studio 2008

 install Objectivity/DB for .NET

 copy license file to the Objectivity/DB installation directory

 check that lock server runs (run oocheckls from command prompt)

 Start Visual Studio 2008

 Create a new C# project
 select “Empty Project” from “Templates”

 Add the Objy PDD Wizard to the project
 right-click project in “Solution Explorer”

 select “Add” ► “New Item...”

 select “Objy PDD Wizard” from “Templates”

November 20, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

C# Development Process

November 20, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

 Create a new federation

 Set “System Name”

 “FD Number” identifies federation

 can be left at default 1

 needs to be randomised if the lock

server serves multiple federations

 “Page Size”

 default is 8K bytes

 for reasons of performance default

size matches disk page size of many

modern operation systems

 Choose “License File”

C# Development Process

 Generate main
 set “Class Name” and “NameSpace”

 Choose your PDD file location
 accept default values

 Wizard generates C# main and persistence design files

 Wizard adds Objectivity/DB assembly to the project

November 20, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistence Designer

 Schema is defined using the

persistence designer

 Schema is updated in federation

by clicking “Update FD”

 Domain classes and application

code is generated by clicking

“Update App”

 for each class a pair of files is

generated, e.g. Author.cs and

AuthorPD.cs

 AuthorPD.cs should not be modified

 Author.cs can be used to add getter

and setters as well as derived

methods if required

November 20, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistent Object Model

 Language independent with persistence by inheritance

 Base types
 numeric: sbyte, short, int, long, byte, ushort, uint, ulong, float, double

 string: ASCII 8-bit, UTF8, UTF16

 boolean

 date/time

 Complex types
 embedded: stored as part of the parent object

 reference: parent object stores object identifier of referenced object

 enumeration

 fixed and variable-length arrays

 Relationships

 Collections

November 20, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Relationships

 Relationships between objects declared within classes
 unary and binary relationships

 to-one and to-many relationships

 Storage and management of relationships
 non-inline: stored in object’s system default association array

 inline: stored in a dedicated attribute per relationship, as a reference
to a single object (to-one) or to a variable-length array (to-many)

 binary associations are represented as separate construct internally

 Consistency of relationships
 referential integrity is maintained by the system

 inverse relationship of a binary relationship is updated automatically
when objects are added or removed

 objects are removed from all relationships when deleted

November 20, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 19

Deletion and Lock Propagation

 Relationship can have semantics

 Deletion propagation
 if an object is deleted all associated objects are also deleted

 Lock propagation
 if an object is locked all associated objects are also locked

November 20, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

delete

lock

Copy and Versioning Behaviour

 Policies define what happens to object relationships when

a copy or a version of an object is made
 copy: old and new object are associated with the same objects

 drop: only old object is associated with other objects

 move: only new object is associated with other objects

November 20, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

copy drop move
Before

After

Domain Classes

 Objectivity/DB uses .NET partial classes to separate

application code and persistence support

 Persistence by inheritance
 both partial classes inherit from ReferenceableObject

 Persistent support class
 defines schema class and attributes

 provides functionality to create and dispose objects

 properties for attributes defined by the schema

 maintains a proxy cache for each relationship

 implements helper and utility functionality

 Application class contains user-defined code

November 20, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Generated Domain Classes

// Author.cs

using System;

using Objectivity.Db;

public partial class Author :

ReferenceableObject

{

public Author(IStorable near,

string name, DateTime birthdate) :

base(near, schemaClass)

{

this.name = name;

this.birthdate = birthdate;

}

public string Name

{

get { return this.name; }

set { this.name = value; }

}

...

}

November 20, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 23

// AuthorPD.cs

using System;

using Objectivity.Db;

using Objectivity.Db.Internal;

public partial class Author :

ReferenceableObject

{

private static SchemaClass schemaClass =

new SchemaClass(

"ObjectivityDemo.Author", 1000000);

private static SchemaAttribute nameField =

new SchemaAttribute(schemaClass,

"name", AttributeKinds.String);

private string name

{

get { return GetStringValue(nameField); }

set { SetStringValue(nameField, value); }

}

...

}

Connecting to Objectivity/DB

 Static functions for startup, shutdown and connection
 initialisation is needed before calling any other database function

 shutdown only possible after all database functions

 federation can be auto-recovered when establishing connection

 Note that this API has been redesigned in Version 10.0

November 20, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

// Initialize Objectivity/DB

Objy.Startup();

// Establish a connection to the federation

Connection connection = Objy.GetConnection("publications.boot", true);

// Application code that interacts with the database

// Shutdown Objectivity/DB

Objy.Shutdown();

Connections, Sessions and Threads

 One connection to federation per application process

 Sessions
 manage resources, i.e. cache and transaction state

 one or many per thread, one shared by many threads

 Cache
 remains intact through commits and checkpoints

 is flushed if transaction is aborted

 if updated object exceed the cache size, overflow pages are pre-
written to disk

November 20, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Connection Session Thread

Transaction

1 n n m

Cache

Interacting with Objectivity/DB

Objy.Startup();

Connection connection = Objy.GetConnection("publications.boot", true);

// Create a session

Session session = connection.CreateSession("main");

// Start a transaction

session.BeginTransaction(OpenMode.Update);

// Get the federation

Federation fd = session.Federation;

// Lookup or create the publications database

Database db;

if (fd.HasDatabase("PublicationsDB"))

{

db = fd.LookUpDatabase("PublicationsDB");

}

else

{

db = new Database(fd, "PublicationsDB");

}

...

session.CommitTransaction();

Objy.Shutdown();

November 20, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 26

Working with Containers and Objects

Container authors;

if (db.HasContainer("Authors"))

{

authors = fd.LookUpContainer("Authors");

}

else

{

authors = new Container(db, "Authors");

}

// Create new objects

Author michael = new Author(authors, "Michael Grossniklaus", new DateTime(1976, 6, 22));

Author moira = new Author(michael, "Moira Norrie");

Publication icoodb = new Book(db, "Proceedings of ICOODB 2009", 2009);

// Update objects

moira.Name = "Moira C. Norrie";

icoodb.AddAuthor(moira);

icoodb.AddAuthor(michael);

// Access objects

Console.WriteLine("{0} is {1} years old.", michael.Name, michael.GetAge());

// Delete object

icoodb.Delete();

November 20, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 27

Persistent Collections

 Built-in persistent collections provide sets, lists and maps
 automatically persistent when created

 conform to the System.Collections.Generic interface

 Type of persistent collections
 ordered vs. unordered collections

 scalable vs. non-scalable collections

November 20, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 28

Scalable Non-Scalable

Ordered TreeListX<T>

TreeMapX<K,V>

TreeSetX<T>

Unordered HashMapX<T>

HashSetX<T>

Map<T>

Iterators

 An iterator is a transient object that provides access to

persistent objects of a given class that meet certain criteria
 scope: collection, container, database or federation

 criteria: PQL predicate given as a string

 Not an efficient method for looking up objects
 predicates are evaluated on client, unless index is available

 can be improved with indexes and scoping

 Result is not built entirely before it is returned
 clients can start process result stream instead of getting blocked

 sorting of result is not possible

 Each iterator class is a subclass of the corresponding

object handle class

November 20, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 29

Iterator Example

// Print all books in the database

Iterator<Book> iBooks = new Iterator<Book>(db);

Book book;

while ((book = iBbooks.Next()) != null)

{

Console.WriteLine("Book '{0}' was published in {1}", book.Name, book.Year);

}

// Print all authors that have a name starting with M

Iterator<Author> iAuthors = new Iterator<Author>(authors, "name =~ \"M.*\"");

Author author;

while ((author = iAuthors.Next()) != null)

{

Console.WriteLine("{0} has published {1} publications", author.Name,

author.GetPublicationCount());

}

November 20, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 30

Scope Names

 Scope names generalise the concept of database roots

 Objects can be assigned a unique name within each level

of the storage hierarchy (scope)
 container

 database

 federation

November 20, 2009 31Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

// Assigning a scope name

HashSetX<Book> books = new HashSetX<Book>(db);

db.NameObject(books, "books");

// Looking up a scope name

HashSetX<Book> allBooks =

(HashSetX<Book>)(HashSetX<IReferenceableObject>) db.LookUpObject("books");

// Unassigning a scope name

db.UnnameObject(allBooks);

Retrieving Objects

 Scope names

 Creating and following links

 Individual and group lookup of persistent objects
 through keys and iterators

 Parallel query
 Parallel Query Engine (Objectivity/PQE)

 divides the query scope among a number of query servers

 Content-based filtering
 predicate-query language supporting primitive types and strings

 used for predicate scans in group lookups

 used when following a to-many relationship

 used to find destination objects in parallel queries

November 20, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 32

LINQ Overview

 Language Integrated Queries
 part of Microsoft’s .NET framework (System.Linq)

 introduced in Version 3.5

 adds native query capabilities to .NET languages

 Standard query operators defined by class Enumerable

 Language extensions are translated into method calls by
the .NET compiler

 LINQ providers
 LINQ to Objects: querying of in-memory collections

 LINQ to SQL: used to query Microsoft SQL Server databases

 LINQ to XML: queries XML documents based on XElement

 LINQ to DataSet: query databases using ADO.NET

 many other providers, e.g. LINQ to db4o

November 20, 2009 33Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

LINQ Example

 Find all authors that are younger than 35 years of age and

that have authored a publication prior to the year 2000

 Code after translation by the .NET compiler

November 20, 2009 34Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

ICollection<Publication> publications = from p in this.db.OfType<Publication>()

where p.Year < 2000

select p;

ICollection<Author> result =

from a in this.db.OfType<Author>()

where a.GetAge() < 35 &&

publications.Intersect(a.GetPublications()).Count() > 0

select a;

ICollection<Publication> publications =

this.db.Cast<Publication>().Where(p => p.Year < 2000);

ICollection<Author> result =

this.db.Cast<Author>().Where(a => a.GetAge() < 35 &&

publications.Intersect(a.GetPublications()).Count() > 0);

Literature

 Objectivity/DB
 http://www.objectivity.com/

November 20, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 35

Next Week
The OM Data Model

• Multiple Inheritance, Instantiation and Classification

• Collections and Associations

• Cardinality, Classification and Evolution Constraints

November 20, 2009 36Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

