
Object-Oriented Databases
Commercial OODBMS: Versant

• Versant Object Database for Java

• Java Versant Interface (JVI)

• Versant Query Language (VQL)

November 6, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 1

Versant

 Company founded in 1988

 Object Database Management Systems
 highly scalable and distributed object-oriented architecture

 patented caching algorithm

 Versant Object Database (C, C++, Java and .NET)
 market leader in object databases

 current version 7.0.1

 available for many platforms

 high availability option and tools

 Versant FastObjects .NET (Microsoft .NET Framework 2.0)
 taken over from the merger with Poet in 2004

 current version 10.0

 5.5 MB memory footprint

November 6, 2009 2Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Worldwide Installations

 Telecommunications
 Alcatel-Lucent, AT&T, Ericsson, Siemens, Nortel, France Telecom,

Verizon, Samsung, Keymile, NEC

 Defense
 BAE Systems, Lockheed Martin, FGM, Qinetiq, Raytheon, Northrup

Grumman, Thales

 Financial services
 BNP/Paribas, JP Morgan, AMEX, ING Barings, LCH Clearnet

 Transportation
 British Airways, Sabre Group, Air France, GE Transportation,

Qantas, Amadeus

 Other
 Biomerieux, Factiva, EDS, Quantel, Oracle, Ovid, ESA

November 6, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Versant Object Manager

Versant Server

Versant Object Database Architecture

November 6, 2009 4Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Raw Devices, File Systems

RAID, SAN, NAS

Virtual System Layer

Versant Network Layer

Versant Network Layer

Versant C

Interface

Versant C++

Interface

Versant Java

Interface

Other Tools,

Interfaces etc.

Versant Dual Cache Architecture

November 6, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Daya

V
e
rs

a
n

t
C

li
e
n

t
V

e
rs

a
n

t
S

e
rv

e
r

User Interface

Application Logic

Versant Object
Manager

Front End
Profile

Object Cache

Versant Storage
Manager

Page Cache

Database Volumes

Back End
Profile

Roll-
Forward

Log

Logical Log File

Physical Log File

Versant Multi-Threaded Architecture

November 6, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Client Process Server Process

Client Process

Client
Thread

Client
Thread

Session Object
Object Cache

Client
Thread

Client
Thread

Session Object
Object Cache

Client
Thread

Session Object
Object Cache

Server
Thread

Server
Thread

Server
Thread

Page Cache

Lock

Table

asynchronous I/O of
non-commit buffer

writes

writes modified
pages to disk

Log Buffer
Thread

Background
Page

Flusher

Java Versant Interface (JVI)

 Provide easy-to-use storage of persistent Java objects
 pure Java syntax and semantics

 instances of nearly all classes can be stored and accessed

 works seamlessly with the Java garbage collector

 multiple threads can work in shared or independent transactions

 Client-server architecture
 provide access to the Versant object database

 client libraries cache objects for faster access and navigation

 database queries are executed on the server

 Support for Java Development Kit
 Version 6.0.5 supports JDK 1.3

 Version 7.0.1 supports JDK 1.4 and 1.5

November 6, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

V
e
rs

a
n

t
C

li
e
n

t
V

e
rs

a
n

t
S

e
rv

e
r

JVI Architecture

November 6, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

O
b

je
c

t
M

a
n

a
g

e
r

J
a
v
a
 V

M

TCP/IP

Java Object Cache Java Object Cache

Object Cache

JNI

Object Cache

JVI Layers

 Fundamental Layer
 database-centric

 objects manipulated indirectly through handles

 package com.versant.fund

 Transparent Layer
 language-centric

 layered on top of fundamental binding

 package com.versant.trans

 ODMG Layer
 language-centric

 ODMG database and transaction model, ODMG collections

 layered on top of transparent binding

 packages com.versant.odmg and com.versant.odmg3

November 6, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Application Development with Versant

 Develop Java classes
 make code “persistence aware”

 sessions, transactions and concurrency

 Create configuration file for enhancer program
 specify the persistence category for each Java class

 Compile Java classes to generate byte-code

 Run enhancer to make byte-code changes
 persistence behaviour inherited from base class
com.versant.trans.Persistent

 Create database

 Run application

November 6, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistence and Navigation Model

 Versant provides persistence by reachability

 Database root can be used to persist the root of an object

graph and assign it a name for retrieving it later
 supported in both transparent and ODMG binding

 intended to be applied to a relatively small number of objects

 makeRoot() creates root and stores object

 deleteRoot() removes root but does not delete object

 findRoot() retrieves root object

 Transparent navigation
 starts from identity, root object, class extent or query

 navigation is used to access associated objects

 Versant transparently locks and retrieves objects from database

 works across database boundaries

November 6, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

First and Second Class Objects

 First Class Objects (FCO)
 can be saved and retrieved independently as standalone objects

 have Logical Object Identifiers (LOID)

 can be the subject of queries

 changes to existing instances are saved automatically

 references to existing FCOs are always valid

 fields marked as transient are not saved in the database

 Second Class Objects (SCO)
 can be saved only as part of an FCO

 cannot be the subject of queries

 if a SCO does not have a corresponding Versant attribute type it is
stored as serialized Java byte stream

 fields marked with transient are not saved in the database

November 6, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistence Categories (FCO)

 Persistent always (p)
 becomes persistent at object instantiation itself

 object is automatically marked dirty when modified

 Persistence capable (c)
 new instances are initially transient, but may become persistent

 makeRoot(), makePersistent() or persistence by reachability

 object is automatically marked dirty when modified

 Superclass of a “p” or “c” class must also be “p” or “c”
 unless the superclass is Object

 note that this rule is recursive

November 6, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistence Categories (SCO)

 Transparent dirty owner (d)
 changes to object automatically mark its owner object as dirty

 used for serialized collections

 Persistence aware (a)
 can directly and transparently modify attributes of an FCO

 if a SCO of a FCO is modified, dirtyObject() must be called for
the FCO that contains the SCO in order to save it

 Not persistent (n)
 no byte code enhancement

 cannot directly access the fields of a persistent object

 access to such fields will throw an IllegalAccessError

November 6, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Connecting to a Database

 Applications perform database operations in sessions
 access to databases, methods, data types and persistent objects

 must be closed before application terminates

 one or more sessions can be open at the same time

 In each JVI layer, a session implementation exists

 Client session elements
 object cache

 cached object descriptor table

 Server session elements
 associated with each connected database is a page cache for

recently accessed pages

 server page cache is in shared memory of the machine containing
the connected database

November 6, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Transaction Model

 Upon starting a session, Versant is always in a transaction
 after commit() or rollback(), a new transaction is started

automatically

 endSession() commits the last transaction

 Transactions have the following characteristics
 atomic, consistent, independent, durable

 coordinated: objects are locked for coordination with other users

 distributed: two-phase commit for working with multiple databases

 ever-present: application code is always in a transaction

 Committing units of work
 commit() releases locks and flushes cache

 checkpointCommit() retains locks and retains cached objects

 commitAndRetain() releases locks and retains cached objects

November 6, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Object Lifecycle

 Creation of persistent objects
 Java objects are created in Java memory

 internal database information per object in the Versant object cache

 Commit
 object data written to database

 “hollow” proxy Java objects retained in memory space

 Rollback
 new database objects will be dropped

 Querying objects
 query passed to database server

 proxy object for every matching object in the result set

 Accessing objects
 Versant transparently fetches object or de-serializes the object

November 6, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Example

// use the transparent layer

TransSession session = new TransSession("PublicationsDB");

// find a previously defined root

Set< ? > publications = (Set< ? >) session.findRoot("publications");

// create a new author assuming that the Author class is either “p” or “c”

Author moira = new Author("Moira C. Norrie");

for (Object object: publications) {

Publication publication = (Publication) object;

publication.addAuthor(moira);

}

// commit the changes

session.commit();

// end the session

session.endSession();

November 6, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Updating Objects

 First Class Objects
 changes to first class objects are automatically applied to the

database upon commit

 database objects are modified transparently

 values of basic types are copied to database

 Second Class Objects
 Transparent Dirty Owner: changes to objects are automatically

applied to the database upon commit

 Persistent Aware: modification of SCO requires explicit dirty of
owner FCO using method TransSession.dirtyObject()

 the reason is that SCOs are serialised into owner FCO

 if a SCO is contained in two FCOs, this will lead to two instances of
the SCO in the Java memory after reloading the FCOs

November 6, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Deleting Objects

 First Class Objects
 delete explicitly with TransSession.deleteObject() and
TransSession.groupDeleteObjects()

 these methods refer to database objects, Java instances will be
garbage collected by the JVM

 JVM calls finalize() upon garbage collection, not deletion

 Second Class Objects
 deleted implicitly by setting reference to null

 memory will be garbage collected by the JVM

 upon commit, the containing FCO will not serialise the SCO

November 6, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

JVI Client Cache Loader

 Versant uses a client-side object cache
 contains query results and objects accessed through navigation

 server tracks which objects are cached by the clients

 Automatic object loading through closure
 given a starting point, closure is defined as the identification and

retrieval of related objects relative to the starting point

 each time an object is dereferenced, the object manager decides if
closure is required and will then locate and load the related object

 The JVI Client Cache Loader API can be used to control

how and when objects are loaded
 each dereference consists of network RPC, object lookup and I/O

 efficiency can be improved by loading multiple objects at once

 however, introduces vendor-specific code into domain classes

November 6, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Breadth, Depth and Path Loading

 Client closure helper classes provide two simple API calls
 groupReadObjects() and getClosure() in class Loader

 Load policies provide control outside of application code
 policies to control the loading of object specified in XML file

 XML “compiled” by Versant PolicyMaker utility

 load() in class Loader loads objects based on the specified policy

November 6, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Level 1

Level 2

Level 3

Breadth
D

e
p
th

Path

Versant Collections

 Storage of Java collections supported
 Array, Vector, Hashtable, LinkedList

 First class object (FCO) collections
 VVector, VHashtable

 Second class object (SCO) collections
 DVector

 Scalable large collections
 LargeVector

 ODMG collections

November 6, 2009 23Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Scalable Large Collections

 Classes DVector, VVector and VHashtable as well as

ODMG collections are implemented in the front-end
 mapped to attributes of type variable-length storage (vstr)

 performance issue with large number of objects in a collection

 Class com.versant.util.LargeVector

 implements the standard interface of Vector

 broken up into multiple nodes

 only needed nodes are brought to front-end on element access

 Locking issues
 more concurrency as not the whole object needs to be locked

 potential for deadlocks

 use locking protocol, e.g. update in ascending order only

November 6, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

ODMG Collections

 Follow the specification of the ODMG standard
 implemented in Versant as thin layer over the transparent binding

 collection classes also available from TransSession

 ODMG 2.0
 JDK 1.1 style collections

 Package com.versant.odmg

 ODMG 3.0
 JDK 1.2 style collections

 Package com.versant.odmg3

 Extend the java.util.Collection interfaces

 Versant recommends using this style of collections

 ODMG Collections are first class objects (FCO)

November 6, 2009 25Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

ODMG Collection Query Facilities

 ODMG collections provide additional query facilities

 VCollection implements java.util.Collection to

add query capabilities over collections
 boolean existsElement(String predicate)

 DCollection query(String predicate)

 Iterator select(String predicate)

 Object selectElement(String predicate)

 Queries over ODMG collections
 only objects in the collection are considered

 predicate is the where part of a VQL Query

 only persistent collections can be queried

November 6, 2009 26Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Versant Query Language (VQL)

 VQL 6
 VQL 6 queries are a subset of OQL as specified by ODMG 2.0

 no sorting, no extensions for new capabilities, limited API

 as of Versant 7.0, VQL 6 queries are deprecated

 VQL 7
 support for complex expressions

 support for server-side sorting

 improved indexing capabilities

 VQL queries are specified as a query string that is
compiled, optimised and executed on the database server

 Queries can be parameterised
 parameter starts with $ followed by characters, digits or underscores

 parameters are bound to values using the bind() method

November 6, 2009 27Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

VQL 7 Example

// create a new publication, assuming the Publication class is “p”

Publication pub = new Publication("Web 2.0 Survey");

// find authors Stefania Leone and Moira C. Norrie

String queryString = "select selfoid from Author where name = $name";

Query query = new Query(session, queryString);

query.bind("name", "Stefania Leone");

QueryResult result = query.execute();

Object author = result.next();

if (author != null) {

pub.addAuthor((Autor) author);

}

query.bind ("name", "Moira C. Norrie");

result = query.execute();

author = result.next();

if (author != null) {

pub.addAuthor((Author) author);

}

November 6, 2009 28Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

VQL 7 Example

// find all publications by Moira C. Norrie and Michael Grossniklaus

String queryString =

"select selfoid " +

"from Publication " +

"where Publication::authors subset_of $authors";

// precompile the query on the server

Query query = new Query(session, queryString);

// bind query to set of already existing author objects

query.bind("authors", new Object[] { moira, michael });

QueryResult result = query.execute();

// print out the names of the publications

for (Object pub = result.next; pub != null;) {

Publication p = (Publication) pub;

System.out.println(p.getTitle());

}

November 6, 2009 29Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Currently, collections can

neither contain strings nor

be parameters. Hence, this

example is not possible.

Event Notification

 Propagation of events from database to registered clients
 Java Beans event model

 callback to event listener objects

 Event types
 class events: create, modify or delete instance

 object events: modify or delete object or group of objects

 transaction demarcation: begin or end transaction

 user-defined events

 Application programming interface
 package com.versant.event

 sub-interfaces of VersantEventListener for each event type

 class EventClient provides client-side functionality

November 6, 2009 30Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Event Channels

 Events communication based on event channels
 abstraction for broadcasting an event notification

 event listeners are registered via a channel

 after creation, an application can “tune-in” to an event channel

 Global namespace for event channels
 persistent across client applications

 Categories
 class-based: class events for a specified set of classes

 object-based: object events for a specified set of objects

 query-based: class events for objects that match a specified query

 Channel management through EventClient
 create new event channel using ChannelBuilder

 access an existing event channel

November 6, 2009 31Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistent Object Hooks

 Allow intervention at all stages of state transitions of a

persistent object
 compute transient attributes

 build transient caches

 perform housekeeping tasks to preserve referential integrity

 Hook methods
 activate() and deactivate()

 preRead(boolean act) and postRead(boolean act)

 preWrite(boolean deact) and postWrite(boolean deact)

 Boolean parameter indicates whether object has been
activated/deactivated (true) or not (false)

 vDelete() when object is deleted

November 6, 2009 32Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Maintaining Referential Integrity

November 6, 2009 33Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

public class Author {

private String name;

private Date birthday;

private Set<Publication> authoredBy;

// delete hook that also removes publication of the deleted author

void vDelete() {

TransSession session = (TransSession)

TransSession.sessionOfCurrentThread();

for (Publication publication: this.authoredBy) {

session.deleteObject(publication);

}

}

...

}

Schema Evolution

 Support for schema evolution based on application

programming interface

 Fundamental binding
 inserting, appending, dropping, and renaming attributes

 adding and renaming classes

 Transparent binding
 method TransSession#setSchemaOption(int) to configure

automatic schema evolution

November 6, 2009 34Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

ClassHandle c = session.locateClass("Report");

c.renameClass("Form");

AttrString description = session.newAttrString("description");

AttrBuilder attribute = session.newAttrBuilder(description);

c.appendAttr(attribute);

Literature

 Versant Object Database
 http://www.versant.com/

November 6, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 35

Next Week
Commercial OODBMS: ObjectStore

• ObjectStore PSE Pro for C++

• Virtual Memory Architecture

• Managing Object Data

November 6, 2009 36Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

