
Object-Oriented Databases
Course Review

• Exam Information

• Summary

• OODBMS Architectures

December 18, 2009 1Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Exam

 Session examination

 Oral exam in English

 Duration of 15 minutes

 5 ECTS

December 18, 2009 2Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Course Summary

I. Basics of Object-Oriented Databases
1. Introduction

2. Object Persistence

3. db4o

II. Advanced Concepts of Object-Oriented Databases
4. Standards and Commercial Systems

5. Storage and Indexing

6. Version Models

III. Semantic Object Data Management
7. OM Data Model and OM Data Model Language

8. Design and Implementation of OMS Avon

9. Context-Aware Data Management

December 18, 2009 3Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Persistence Strategies

 Persistence by inheritance
 persistence capabilities inherited from pre-defined persistent class

 Versant (C++), Objectivity/DB (C++)

 Persistence by instantiation
 objects made persistent and get persistence capabilities upon

instantiation

 ObjectStore (C++)

 Persistence by reachability
 objects made persistent if reachable from other persistent object

 O2 (C++/Java), ObjectStore (Java), Versant (Java/Smalltalk),
Objectivity/DB (Java/Smalltalk), db4o (Java/.NET), ODMG

December 18, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 4

OODBMS Architectures

 RDBMS architectures are very similar
 server centric, index-based, relational algebra execution engine

 performance and scalability numbers vary by small percentages

 OODBMS architectures vary considerably and exhibit

wildly different characteristics
 performance and scalability numbers may vary by orders of

magnitude

 OODBMS architectures and their impact on expectations of

early adopters can be seen as one of the factors for the,

initially, limited success of OODBMS

 It is important to consider application characteristics and

understand which OODBMS architecture is best suited

December 18, 2009 5Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

The Major Factors

 Key distinguishing implementation differences lead to

vastly different runtime characteristics

 Primary areas impacting on performance include
 core architecture

 concurrency model

 network model

 query implementation

 identity management

 Other feature functionality may also have an impact

depending on application characteristics

December 18, 2009 6Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Core Architecture

 Core architecture determines the following aspects
 caching

 query processing

 transaction management

 object life cycle management, i.e. tracking of new, dirty and deleted

 Three architectural variants are popular in OODBMS
 container-based

 page-based

 object-based

 Name of the architecture reflects both
 unit of transfer in network calls

 lowest level of locking granularity

December 18, 2009 7Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Container-Based Architecture

 Ships disk segments (containers) across the network

 Client libraries implement database functionality
 container caching, query processing, object life cycle management

and transactions

 All objects must reside inside a container

 Container model is layered over application domain model

December 18, 2009 8Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Server

Disk

Locks

Client
Container

Cache

Client
Container

Cache

Remote Query

Query

NFS Requests

NFS Pages

Page-Based Architecture

 Ships pages of disk across the network
 pages get address translated into virtual memory of an application

 Client libraries implement database functionality
 container caching, query processing, object life cycle management

and transactions

 Typically, object placement strategies are implemented

December 18, 2009 9Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Server

Disk P
a
g
e

 S
e
rv

e
r

Client

Client
Page

Cache

Query

Page Requests

Page Responses

Lock
Coordinator Swap

Page
Cache

Swap

Lock Callback

Object-Based Architecture

 Ships objects across the network

 Caching and behaviour in both client and server
 server: page cache, indexes, locks, queries and transactions

 client libraries: object caching, local locking and object life cycles

 No object placement strategies have to be implemented

December 18, 2009 10Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Server

Disk

O
b
je

c
t
S

e
rv

e
r

Client

Client
Object
Cache

Object Requests

Objects

Page
Cache

Object
Cache

Query

Concurrency Model

 The three core architectures have differing concurrency
models to provide transaction isolation
 container concurrency

 page concurrency

 object concurrency

 All implementations of these models
 are tightly coupled with network characteristics

 can cache locks locally at the client across transaction boundaries

 are likely to require lock coordination and cache consistency
operations for updates

 In container and page-based systems, object placement
and locking are tightly coupled

 In object-based systems, these issues are orthogonal

December 18, 2009 11Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Container Concurrency

 Separate lock server coordinates concurrent access to

data in same container

 Locking algorithm
 clients requests lock before caching a container

 locks are generally released at transaction boundaries

 write request will establish a queue if there already read requests

 subsequent read and write requests inserted in queue

 after write request has been filled, other requests are filled

 queue disappears if no further write requests

 clients caching an updated container must refresh it before read

 As containers hold many objects, possibility of false waits

and deadlocks

December 18, 2009 12Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Page Concurrency

 Page server coordinates concurrent access
 tracks which applications are accessing each page

 grants permission to lock pages locally at the client

 Locking algorithm
 client request lock before caching a page

 write request causes server to use lock callbacks

 clients either release lock and give up permission to cache page, or
request blocks on each objecting client for a specified timeout

 clients that have released lock will refresh page on next access

 As locks and permissions are taken out at the page level,

false waits and deadlocks can occur

December 18, 2009 13Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Object Concurrency

 Server maintains queues at object level to control

concurrency of access to the same object

 Locking algorithm
 clients request lock before caching object locally

 locks are generally released at transaction boundaries

 write request will establish queue, if read locks already exist

 all subsequent requests are inserted into queue

 after write request has been filled, other requests are filled

 queue disappears if no further write requests

 clients caching an updated object must refresh it before read

 Since locking is done at object level, no false waits or

deadlocks can occur

December 18, 2009 14Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Network Model

 Core architectures imply three different network models
 container network model

 page network model

 object network model

 In a distributed system, different network models affect
 bandwidth utilisation

 performance

 Network model is closely tied to locking model
 information transfer occurs upon lock, if not already cached locally

 lowest granularity level of network transfer is equal to lowest
granularity level of locking

December 18, 2009 15Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Network Models

 Container network model
 object request translated to container request

 entire container transferred, even if not all objects are accessed

 locks are place on the whole container

 Page network model
 object request translated to page request

 entire page transferred, even if not all objects are accessed

 locks are placed on the whole page

 Object network model
 unit of transfer is an object or collection of objects

 object or collection request may include a depth request

 locks are placed on one object or all objects within a collection

December 18, 2009 16Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Query Implementation

 OODBMS focus on supporting seamless navigation

between related objects using language constructs
 native support of navigational access is a key advantage of

OODBMS over the RDBMS complex join concept

 relationships are a static part of the system rather than runtime
computed

 Querying data in OODBMS consists of two steps
 access first level objects of a use case

 use navigation to access related objects

 Query implementation impacts on
 where the query execution takes place

 flexibility of what can be queried

 indexing capabilities

December 18, 2009 17Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Container Query

 Query processing at the client
 client may be another remote client

 client is, however, a process separate from the NFS page server

 “opposite” architecture compared to a relational database

 Query processing
 all objects involved in the query must be identified by the database

or container they reside in (which also includes potential indexes)
and loaded into the client process for query execution

 query returns the containers holding the result objects

 From network and locking perspective, result may contain

objects that did not actually satisfy the query predicate

December 18, 2009 18Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Page Query

 Query processing at the client

 Query processing
 all pages containing objects involved in the query are loaded

 query returns references to objects that satisfy the query predicate

 pages containing these objects have, implicitly, already been loaded
across the network and translated into the client memory

 Indexed query processing
 all index pages relevant to the query are loaded

 query returns references to objects that satisfy the query predicate

 pages containing these objects may have to be loaded across the
network and translated into the client memory

 From network and locking perspective, result may contain

objects that did not actually satisfy the query predicate

December 18, 2009 19Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Object Query

 Query execution engine runs within database server
 any object is reachable via query, even if it has no relationships

 indexes for object attributes maintained on server

 Query processing
 query statement sent to server from client

 query executed on server using optimiser and indexes

 result set of objects satisfying the query predicate returned to client

 Only query statement and objects satisfying the query are

transferred across the network

December 18, 2009 20Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Identity Management

 OODBMS use object identity for establish uniqueness and
implementing relationships

 Identity management impacts on
 long-term operational behaviour

 flexibility, data scalability and schema evolution

 Physical identity
 unique identifier is dependent on the physical location

 mutable, reusable, immobile and rigid

 dereferencing very fast

 Logical identity
 unique identifier is independent of the physical location

 immutable, never reused, mobile and flexible

 logical references need to be translated into physical references

December 18, 2009 21Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

OODBMS Architectures Revealed

 Objectivity/DB
 container-based architecture

 physical identity

 ObjectStore Enterprise
 page-based architecture (queries can be executed on the server)

 physical identity

 Versant Object Database
 object-based architecture

 logical identity

 db4o
 object-based architecture

 physical identity

December 18, 2009 22Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

Literature

 Versant Object Database
 http://www.versant.com/

 Robert Greene: OODBMS Architectures
 http://www.odbms.org/experts.html#article9

 Adrian Marriott: OODBMS Architectures Revisited
 http://www.odbms.org/experts.html#article11

 Robert Greene: OODBMS Architectures Defended
 http://www.odbms.org/experts.html#article12

December 18, 2009 Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch 23

Object-Oriented Databases
The End

December 18, 2009 24Michael Grossniklaus – Department of Computer Science – grossniklaus@inf.ethz.ch

