
2 December 2005

Introduction to Databases
Object and Object-Relational Databases

Prof. Beat Signer

Department of Computer Science

Vrije Universiteit Brussel

http://vub.academia.edu/BeatSigner



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 2May 10, 2010

Impedance Mismatch Revisited

 Combination of SQL with a host language
 mix of declarative and procedural programming paradigms

 two completely different data models

 different set of data types

 Interfacing with SQL is not straightforward
 data has to be converted between host language and SQL due to 

the impedance mismatch

 ~30% of the code and effort is used for this conversion!

 The problem gets even worse if we would like to use an

object-oriented host language
 two approaches to deal with the problem

- object databases (object-oriented databases)

- object-relational databases



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 3May 10, 2010

Impedance Mismatch Revisited ...

 Note that it would be easier to use the SQL AVG operator

public float getAverageCDLength() {
float result = 0.0;
try {

Connection conn = this.openConnection();
Statement s = conn.createStatement();
ResultSet set = s.executeQuery("SELECT length FROM CD");
int i = 0;
while (set.next()) {

result += set.getInt(1);
i++;

}
return result/i;

} catch (SQLException e) {
System.out.println("Calculation of average length failed.");
return 0;

}
} 



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 4May 10, 2010

Object Databases

 ODBMSs use the same data model as object-oriented 

programming languages
 no object-relational impedance mismatch due to a uniform model

 An object database combines the features of an object-

oriented language and a DBMS (language binding)
 treat data as objects

- object identity

- attributes and methods

- relationships between objects

 extensible type hierarchy

- inheritance, overloading and overriding as well as customised types

 declarative query language



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 5May 10, 2010

Persistent Programming Languages

 Several approaches have been proposed to make 

transient programming language objects persistent
 persistence by class

- declare that a class is persistent

- all objects of a persistent class are persistent whereas objects of

non-persistent classes are transient

- not very flexible if we would like to have persistent and transient objects

of a single class

- many ODBMS provide a mechanism to make classes persistence capable

 persistence by creation

- introduce new syntax to create persistent objects

- object is either persistent or transient depending on how it was created

 persistence by marking

- mark objects as persistent after creation but before the program terminates



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 6May 10, 2010

Persistent Programming Languages ...

 persistence by reachability

- one or more objects are explicitly declared as persistent objects (root objects)

- all the other objects are persistent if they are reachable from a root object via

a sequence of one or more references

- easy to make entire data structures persistent



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 7May 10, 2010

ObjectStore Example

 Persistence by reachability via specific database roots

 Persistence capable classes
 post-processor makes specific classes persistent capable

 Persistent aware classes
 can access and manipulate persistent objects (not persistent)

 Three states after a persistent object has been loaded
 hollow: proxy with load on demand (lazy loading)

 active: loaded in memory and flag set to clean

 stale: no longer valid (e.g. after a commit)

Person ariane = new Person("Ariane Peeters")
db.createRoot("Persons", ariane);



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 8May 10, 2010

ObjectStore Example ...

 Post processing
(1) compile all source files

(2) post-process the class files to generate annotated versions of 
the class files

(3) run the post-processed main class

javac *.java

osjcfp –dest . –inplace *.class

java mainClass



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 9May 10, 2010

ODBMS History

 First generation ODBMS
 1986

- G-Base (Graphael, F)

 1987

- GemStone (Servio Corporation, USA)

 1988

- Vbase (Ontologic)

- Statice (Symbolics)

 Second generation ODBMS
 1989

- Ontos (Ontos)

- ObjectStore (Object Design)

- Objectivity (Objectivity)

- Versant ODBMS (Versant Object Technology)



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 10May 10, 2010

ODBMS History ...

 1989

- The Object-Oriented Database System Manifesto

 Third generation ODBMS
 1990

- Orion/Itasca (Microelectronis and Computer Technology Cooperation, USA)

- O2 (Altaïr, F)

- Zeitgeist (Texas Instruments)

 Further developments
 1991

- foundation of the Object Database Management Group (ODMG) 

 1993

- ODMG 1.0 standard



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 11May 10, 2010

ODBMS History ...

 1996

- PJama (Persistent Java)

 1997

- ODMG 2.0 standard

 1999

- ODMG 3.0 standard

 2001

- db4o (database for objects)

 ...



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 12May 10, 2010

The Object-Oriented Database Manifesto

 There have been different attempts to

define object-oriented databases

 One of the efforts was the Object-Oriented

Database System Manifesto by

Atkinson et. al
 defines 13 mandatory features that an

object-oriented database system must have

- 8 object-oriented system features

- 5 DBMS features

 optional features

- multiple inheritance, type checking, versions, ...

 open features

- points where the designer can make a number of choices

Malcolm Atkinson



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 13May 10, 2010

The Object-Oriented Database Manifesto ...

 Object-oriented system features
 complex objects

- complex objects built from simple ones by constructors (e.g. set, tuple and list) 

- constructors must be orthogonal

 object identity

- two objects can be identical (same object) or equal (same value)

 encapsulation

- distinction between interface and implementation

 types and classes

- type defines common features of a set of objects

- class as a container for objects of the same type

 type and class hierarchies

 overriding, overloading and late binding 



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 14May 10, 2010

The Object-Oriented Database Manifesto ...

 computational completeness

- should be possible to express any computable function using the DML

 extensibility

- set of predefined types

- no difference in usage of system and user-defined types

 DBMS features
 persistence

- orthogonal persistence (persistence capability does not depend on type)

 secondary storage management

- index management, data clustering, data buffering, access path selection and 

query optimisation

 concurrency

- atomicity, consistency, isolation and durability (ACID)

- serialisability of operations



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 15May 10, 2010

The Object-Oriented Database Manifesto ...

 recovery

- in case of hardware or software failures, the system should recover

 ad hoc query facility

- high-level declarative query language

 The OODBS Manifesto lead to discussion and reactions 

form the RDBMS community
 Third-Generation Database System Manifesto, Stonebraker et al.

 The Third Manifesto, Darwen and Date

 Issues not addressed in the manifesto
 database evolution

 constraints

 object roles

 ...



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 16May 10, 2010

ODMG

 Object Database Management

Group (ODMG) founded in 1991

by Rick Cattell
 standardisation body including all major

ODBMS vendors

 Define a standard to increase the portability

accross different ODBMS products
 Object Model

 Object Definition Language (ODL)

 Object Query Language (OQL)

 language bindings

- C++, Smalltalk and Java bindings

Rick Cattell



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 17May 10, 2010

ODMG Object Model

 ODMG object model is based on the OMG object model

 Basic modelling primitives
 object: unique identifier

 literal: no identifier

 An object's state is defined by the values it carries for a 

set of properties (attributes or relationships)

 An object's behaviour is defined by the set of operations 

that can be executed

 Objects and literals are categorised by their type

(common properties and common behaviour)



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 18May 10, 2010

Types

 Specification
 properties (attributes and relationships)

 operations

 exceptions

 Implementation
 language binding

 a specification can have more than one implementation



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 19May 10, 2010

Type Specifications

 Interface defines only abstract behaviour
 attribute declarations in an interface define only abstract 

behaviour (can be implemented as a method!)

 Class defines abstract behaviour and abstract state

 Literal defines abstract state



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 20May 10, 2010

Objects

 Atomic objects
 user defined

 no built-in atomic object types

 Collection objects
 Set<t>

 Bag<t>

 List<t>

 Array<t>

 Dictionary<t,v>

 Structured objects
 Date, Interval, Time, Timestamp



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 21May 10, 2010

Literal Types

 Atomic literals
 long, long long, short, unsigned long, unsigned short, 
float, double, boolean, octet, char, string, enum

 Collection literals
 set<t>

 bag<t>

 list<t>

 array<t>

 dictionary<t,v>

 Structured literals
 date, interval, time, timestamp

 user defined structures (struct)



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 22May 10, 2010

Relationships

 One-to-one, one-to-many or many-to-many relationships 

with referential integrity maintained by the system

class Assistant {
...
relationship set<ExerciseGroup> leads
inverse ExerciseGroup::isLeadBy;

...
}

class ExerciseGroup {
...
relationship Assistant isLeadBy
inverse Assistant::leads;

...
} 



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 23May 10, 2010

Behaviour

 Behaviour is specified as a set of operation signatures

 An operation signature defines
 name of the operation

 names and types of arguments

 type of return value

 names of exceptions



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 24May 10, 2010

Inheritance of Behaviour

 A subtype may
 define new behaviour in addition to the one defined in its 

supertypes

 refine a supertype's behaviour

interface Contact {...}
interface Person : Contact {...}
interface ETHPerson : Person {...}



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 25May 10, 2010

Inheritance of State and Behaviour

 Keyword EXTENDS

 A subclass inherits all the properties and behaviour of its 

superclass

interface Contact {...}
interface Student {...}
class Person : Contact {...}
class ETHPerson
extends Person : Student {...}



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 26May 10, 2010

Object Definition Language (ODL) Example

Assistant Professor

Employee Salary

Lecture Exercise

Session

Course

StudentI

Student
teaches

isTaughtBy

leads

isLeadBy

hasPrerequisites

isPrerequisiteFor

attends

isAttendedBy

hasSessions

isSessionOf

one-to-one

many-to-many

one-to-many

is-a

extends



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 27May 10, 2010

ODL Example ...

module Education {
exception SessionFull{};
...

class Course (extent courses) {
attribute name;
relationship Department offeredBy

inverse Department::offers;
relationship list<Session> hasSessions

inverse Session::isSessionOf;
relationship set<Course> hasPrerequisites

inverse Course::isPrerequisiteFor;
relationship set<Course> isPrerequisiteFor

inverese Course::hasPrerequisites;
};

class Salary (extent salaries) {

attribute float base;
attribute float bonus;

};



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 28May 10, 2010

ODL Example ...

class Session (extent sessions) {
attribute string number;
relationship Course isSessionOf

inverse Course::hasSessions;
relationship set<Student> isAttendedBy

inverse Student::attends;
};

class Lecture extends Session (extent lectures) {
relationship Professor isTaughtBy

inverse Professor::teaches;
};

class Exercise extends Session (extent exercises) {
attribute unsigned short maxMembers;
relationship Assistant isLeadBy

inverse Assistant::leads;
};



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 29May 10, 2010

ODL Example ...

interface StudentI {

attribute string name;
attribute Address address;
relationship set<Session> attends

inverse Session::isAttendeBy;
}; 

class Student : StudentI (extent students) {
attribute Address address;
relationship set<Session> attends

inverse Session::isAttendedBy;
};

class Employee (extent employees) {
attribute string name
attribute Salary salary;
void hire();
void fire() raises (NoSuchEmployee);

};



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 30May 10, 2010

ODL Example ...

class Professor extends Employee (extent professors) {
attribute enum Type{assistant, full, ordinary} rank; 
relationship worksFor

inverse Department:hasProfessors;
relationship set<Lectures> teaches

inverse Session::isTaughtBy;
};

class Assistant extends Employee : StudentI (extent assistants) {
attribute Address address;
relationship Exercise leads

inverse Exercise::isLeadBy
relationship set<Session> attends

inverse Session::isAttendedBy;
};



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 31May 10, 2010

"ODMG 4.0" Standard

 After the ODMG 3.0 standard the group disbanded
 ODMG Java language binding formed basis for

the Java Data Objects (JDO) specification

 The OMG Object Database Technology Working Group 

(ODBT WG) was founded in 2005 due to the new 

interest in object databases

 ODBT WG is now working on a fourth version of an 

object database standard



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 32May 10, 2010

Object Databases

 Many ODBMS also implement a versioning mechanism

 Many operations are performed by using a navigational 

rather than a declarative interface
 following pointers

 In addition, an object query language (OQL) can be used 

to retrieve objects in a declarative way
 some systems (e.g. db4o) also support native queries

 Faster access than RDBMS for many tasks
 no join operations required

 However, object databases lack a formal mathematical 

foundation!



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 33May 10, 2010

Object-Relational Mapping

 "Automatic" mapping of object-oriented model to 

relational database
 developer has to deal less with persistence-related programming

 Hibernate
 mapping of Java types to SQL types

 generates the required SQL statements behind the scene

 standalone framework

 Java Persistence API (JPA)
 Enterprise Java Beans Standard 3.0

 use annotations to define mapping

 javax.persistence package 



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 34May 10, 2010

Object-Relational Databases

 The object-relational data model extends the relational 

data model
 introduces complex data types

 object-oriented features

 extended version of SQL to deal with the richer type system

 Complex data types
 new collection types including multisets and arrays

 attributes can no longer just contain atomic values (1NF) but also 
collections

 nest and unnest operations for collection type attributes

 ER concepts such as composite attributes or multivalued 
attributes can be directly represented in the object-relational data 
model



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 35May 10, 2010

Object-Relational Databases ...

 Since SQL:1999 we can define user-defined types

 Type inheritance can be used for inheriting attributes of 

user-defined types



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 36May 10, 2010

Object vs. Object-Relational Databases

 Object databases
 complex datatypes

 tight integration with an object-oriented programming language 
(persistent programming language)

 high performance

 Object-relational databases
 complex datatypes

 powerful query languages

 good protection of data from programming errors



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 37May 10, 2010

Homework

 Study the following chapter of the

Database System Concepts book
 chapter 9

- Object-Based Databases



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 38May 10, 2010

Exercise 12

 General Q&A about previous exercises



Beat Signer - Department of Computer Science - bsigner@vub.ac.be 39May 10, 2010

References

 A. Silberschatz, H. Korth and S. Sudarshan, Database 

System Concepts (Fifth Edition), McGraw-Hill, 2005

 R. Cattell et al., The Object Data Standard: ODMG 3.0, 

Morgan Kaufmann, 2000

 M. Atkinson et al., The Object-Oriented Database 

System Manifesto, Proceedings of 1st International 

Conference on Deductive and Object-Oriented 

Databases, Kyoto, Japan, December 1989



2 December 2005

Next Lecture
Current Trends and Review


