Chapter 2

Object Model

2.1 Introduction

This chapter defines the Object Model supported by ODMG-compliant object data
management systems (ODMSs). The Object Model is important because it specifies
the kinds of semantics that can be defined explicitly to an ODMS. Among other things,
the semantics of the Object Model determine the characteristics of objects, how objects
can be related to each other, and how objects can be named and identified.

Chapter 3 defines programming language—independent object specification languages.
One such specification language, Object Definition Language (ODL), is used to
specify application object models and is presented for all of the constructs explained
in this chapter for the Object Model. It is also used in this chapter to define the opera-
tions on the various objects of the Object Model. Chapters 5, 6, and 7, respectively,
define the C++, Smalltalk, and Java programming language bindings for ODL and for
manipulating objects. Programming languages have some inherent semantic differ-
ences; these are reflected in the ODL bindings. Thus, some of the constructs that
appear here as part of the Object Model may be modified slightly by the binding to a
particular programming language. Modifications are explained in Chapters 5, 6, and 7.

The Object Model specifies the constructs that are supported by an ODMS:

+ The basic modeling primitives are the object and the literal. Each object has
a unique identifier. A literal has no identifier.

» Objects and literals can be categorized by their types. All elements of a given
type have a common range of states (i.e., the same set of properties) and
common behavior (i.e., the same set of defined operations). An object is
sometimes referred to as an instance of its type.

- The state of an object is defined by the values it carries for a set of proper-
ties. These properties can be attributes of the object itself or relationships
between the object and one or more other objects. Typically, the values of an
object’s properties can change over time.

» The behavior of an object is defined by the set of operations that can be exe-
cuted on or by the object. Operations may have a list of input and output
parameters, each with a specified type. Each operation may also return a
typed result.

* An ODMS stores objects, enabling them to be shared by multiple users and
applications. An ODMS is based on a schema that is defined in ODL and
contains instances of the types defined by its schema.

10 ODMG Object Model

The ODMG Object Model specifies what is meant by objects, literals, types, opera-
tions, properties, attributes, relationships, and so forth. An application developer uses
the constructs of the ODMG Object Model to construct the object model for the appli-
cation. The application’s object model specifies particular types, such as Document,
Author, Publisher, and Chapter, and the operations and properties of each of these
types. The application’s object model is the ODMS’s (logical) schema. The ODMG
Object Model is the fundamental definition of an ODMS’s functionality. It includes
significantly richer semantics than does the relational model, by declaring relation-
ships and operations explicitly.

2.2 Types: Specifications and Implementations

There are two aspects to the definition of a type. A type has an external specification
and one or more implementations. The specification defines the external characteris-
tics of the type. These are the aspects that are visible to users of the type: the operations
that can be invoked on its instances, the properties, or state variables, whose values can
be accessed, and any exceptions that can be raised by its operations. By contrast, a
type’s implementation defines the internal aspects of the objects of the type: the imple-
mentation of the type’s operations and other internal details. The implementation of a
type is determined by a language binding.

An external specification of a type consists of an implementation-independent,
abstract description of the operations, exceptions, and properties that are visible to
users of the type. An interface definition is a specification that defines only the abstract
behavior of an object type. A class definition is a specification that defines the abstract
behavior and abstract state of an object type. A class is an extended interface with
information for ODMS schema definition. A literal definition defines only the abstract
state of a literal type. Type specifications are illustrated in Figure 2-1.

Abstract behavior Abstract state
(operations) (properties)

Figure 2-1. Type Specifications

2.2 Types: Specifications and Implementations 11

For example, interface Employee defines only the abstract behavior of Employee
objects. Class Person defines both the abstract behavior and the abstract state of
Person objects. Finally, the struct Complex defines only the abstract state of Complex
number literals. In addition to the struct definition and the primitive literal datatypes
(boolean, char, short, long, float, double, octet, and string), ODL defines declarations
for user-defined collection, union, and enumeration literal types.

interface Employee {...};
class Person {...};
struct Complex {float re; float im; };

An implementation of an object type consists of a representation and a set of methods.
The representation is a data structure that is derived from the type’s abstract state by a
language binding: For each property contained in the abstract state there is an instance
variable of an appropriate type defined. The methods are procedure bodies that are
derived from the type’s abstract behavior by the language binding: For each of the
operations defined in the type’s abstract behavior a method is defined. This method
implements the externally visible behavior of an object type. A method might read or
modify the representation of an object’s state or invoke operations defined on other
objects. There can also be methods in an implementation that have no direct counter-
part to the operations in the type’s specification. The internals of an implementation
are not visible to the users of the objects.

Each language binding also defines an implementation mapping for literal types. Some
languages have constructs that can be used to represent literals directly. For example,
C++ has a structure definition that can be used to represent the above Complex literal
directly using language features. Other languages, notably Smalltalk and Java, have no
direct language mechanisms to represent structured literals. These language bindings
map each literal type into constructs that can be directly supported using object classes.
Further, since both C++ and Java have language mechanisms for directly handling
floating-point datatypes, these languages would bind the float elements of Complex
literals accordingly. Finally, Smalltalk binds these fields to instances of the class Float.
As there is no way to specify the abstract behavior of literal types, programmers in
each language will use different operators to access these values.

The distinction between specification and implementation views is important. The
separation between these two is the way that the Object Model reflects encapsulation.
The ODL of Chapter 3 is used to specify the external specifications of types in appli-
cation object models. The language bindings of Chapters 5, 6, and 7, respectively,
define the C++, Smalltalk, and Java constructs used to specify the implementations of
these specifications.

A type can have more than one implementation, although only one implementation is
usually used in any particular program. For example, a type could have one C++

12 ODMG Object Model!

implementation and another Smalltalk implementation. Or a type could have one C++
implementation for one machine architecture and another C++ implementation for a
different machine architecture. Separating the specifications from the implementations
keeps the semantics of the type from becoming tangled with representation details.
Separating the specifications from the implementations is a positive step toward
multilingual access to objects of a single type and sharing of objects across
heterogeneous computing environments.

Many object-oriented programming languages, including C++, Java, and Smalltalk,
have language constructs called classes. These are implementation classes and are not
to be confused with the abstract classes defined in the Object Model. Each language
binding defines a mapping between abstract classes and its language’s implementation
classes.

2.2.1 Subtyping and Inheritance of Behavior

Like many object models, the ODMG Object Model includes inheritance-based
type-subtype relationships. These relationships are commonly represented in graphs;
each node is a type and each arc connects one type, called the supertype, and another
type, called the subtype. The type-subtype relationship is sometimes called an is-a rela-
tionship, or simply an ISA relationship. It is also sometimes called a generalization-
specialization relationship. The supertype is the more general type; the subtype is the
more specialized.

interface Employee {...};
interface Professor : Employee {...};
interface Associate_Professor : Professor {...};

For example, Associate_Professor is a subtype of Professor; Professor is a subtype of
Employee. An instance of the subtype is also logically an instance of the supertype.
Thus, an Associate_Professor instance is also logically a Professor instance. That is,
Associate_Professor is a special case of Professor.

An object’s most specific type is the type that describes all the behavior and properties
of the instance. For example, the most specific type for an Associate_Professor object
is the Associate_Professor interface; that object also carries type information from the
Professor and Employee interfaces. An Associate_Professor instance conforms to all
the behaviors defined in the Associate_Professor interface, the Professor interface, and
any supertypes of the Professor interface (and their supertypes, etc.). Where an object
of type Professor can be used, an object of type Associate_Professor can be used
instead, because Associate_Professor inherits from Professor.

A subtype’s interface may define characteristics in addition to those defined on its
supertypes. These new aspects of state or behavior apply only to instances of the
subtype (and any of its subtypes). A subtype’s interface also can be refined to

2.2 Types: Specifications and Implementations 13

O « _ — inherits [0.n]
ODL interface

inherits [0..n]

O T \/\ extends [0..1]
-« —
ODL class

Figure 2-2. Class-Interface Relationships

specialize state and behavior. For example, the Employee type might have an operation
for calculate_ paycheck. The Salaried_Employee and Hourly_Employee class imple-
mentations might each refine that behavior to reflect their specialized needs. The poly-
morphic nature of object programming would then enable the appropriate behavior to
be invoked at runtime, dependent on the actual type of the instance.

class Salaried_Employee : Employee {...};
class Hourly_Employee : Employee {...};

The ODMG Object Model supports multiple inheritance of object behavior. Therefore,
itis possible that a type could inherit operations that have the same name, but different
parameters, from two different interfaces. The model precludes this possibility by
disallowing name overloading during inheritance.

ODL classes are mapped by a language binding to classes of a programming language
that are directly instantiable. Interfaces are types that cannot be directly instantiated.
For example, instances of the classes Salaried_Employee and Hourly_Employee may
be created, but instances of their supertype interface Employee cannot. Subtyping
pertains to the inheritance of behavior only; thus, interfaces may inherit from other
interfaces and classes may also inherit from interfaces. Due to the inefficiencies and
ambiguities of multiple inheritance of state, however, interfaces may not inherit from
classes, nor may classes inherit from other classes. These relationships are illustrated
in Figure 2-2.

2.2.2 Inheritance of State

In addition to the ISA relationship that defines the inheritance of behavior between
object types, the ODMG Object Model defines an EXTENDS relationship for the
inheritance of state and behavior. The EXTENDS relationship also applies only to
object types; thus, only classes and not literals may inherit state. The EXTENDS
relationship is a single inheritance relationship between two classes whereby the
subordinate class inherits all of the properties and all of the behavior of the class that
it extends.

14 ODMG Object Model

class Person {
attribute string name;
attribute Date birthDate;
%
/1 in the following, the colon denotes the ISA relationship
// the extends denotes the EXTENDS relationship
class EmployeePerson extends Person : Employee {
attribute Date hireDate;
attribute Currency payRate;
relationship Manager boss inverse Manager::subordinates;
8
class ManagerPerson extends EmployeePerson : Manager {
relationship set<Employee> subordinates
inverse Employee::boss;
h
The EXTENDS relationship is transitive; thus, in the example, every ManagerPerson
would have a name, a birthDate, a hireDate, a payRate, and a boss. Note also that,
since class EmployeePerson inherits behavior from (ISA) Employee, instances of
EmployeePerson and ManagerPerson would all support the behavior defined within
this interface.

The only legal exception to the name-overloading prohibition occurs when the same
property declaration occurs in a class and in one of its inherited interfaces. Since the
properties declared within an interface also have a procedural interface, such
redundant declarations are useful in situations where it is desirable to allow
relationships to cross distribution boundaries, yet they also constitute part of the
abstract state of the object (see Section 2.6 on page 37 for information about the
properties and behavior that can be defined for atomic objects). In the previous
example, it would be permissible (and actually necessary) for the interfaces Employee
and Manager to contain copies of the boss/subordinates relationship declarations,
respectively. It would also be permissible for the interface Employee to contain the
hireDate and/or payRate attributes if distributed access to these state variables was
desired.

2.2.3 Extents

The extent of a type is the set of all instances of the type within a particular ODMS. If
an object is an instance of type A, then it will of necessity be a member of the extent
of A. If type A is a subtype of type B, then the extent of A is a subset of the extent of B.

A relational DBMS maintains an extent for every defined table. By contrast, the
ODMS schema designer can decide whether the system should automatically maintain
the extent of each type. Extent maintenance includes inserting newly created instances

2.3 Objects 15

in the set and removing instances from the set as they are deleted. It may also mean
creating and managing indexes to speed access to particular instances in the extent.
Index maintenance can introduce significant overhead, so the object schema designer
specifies that the extent should be indexed separately from specifying that the extent
should be maintained by the ODMS.

2.2.4 Keys

In some cases, the individual instances of a type can be uniquely identified by the
values they carry for some property or set of properties. These identifying properties
are called keys. In the relational model, these properties (actually, just attributes in rela-
tional databases) are called candidate keys. A simple key consists of a single property.
A compound key consists of a set of properties. The scope of uniqueness is the extent
of the type; thus, a type must have an extent to have a key.

2.3 Objects

This section considers each of the following aspects of objects:

. Creation, which refers to the manner in which objects are created by the
programmer.

+ Identifiers, which are used by an ODMS to distinguish one object from
another and to find objects.

» Names, which are designated by programmers or end users as convenient
ways to refer to particular objects.

+ Lifetimes, which determine how the memory and storage allocated to objects
are managed.

» Structure, which can be either atomic or not, in which case the object is com-
posed of other objects.

All of the object definitions, defined in this chapter, are to be grouped into an enclosing
module that defines a name scope for the types of the model.

module ODLTypes {
exception DatabaseClosed{};
exception TransactionlnProgress(};
exception TransactionNotInProgress{};
exception IntegrityError{};
exception LockNotGranted(};

// the following interfaces and classes are defined here

16 ODMG Object Model

2.3.1 Object Creation

Objects are created by invoking creation operations on factory interfaces provided on
factory objects supplied to the programmer by the language binding implementation.
The new operation, defined below, causes the creation of a new instance of an object
of the Object type.

interface ObjectFactory {
Object new();
%
All objects have the following ODL interface, which is implicitly inherited by the defi-
nitions of all user-defined objects:

interface Object {

enum Lock_Type{read, write, upgrade};

void lock(in Lock_Type mode) raises(LockNotGranted);
boolean try_lock(in Lock_Type mode);

boolean same_as(in Object anObject);

Object copy();

void delete();

¥
Identity comparisons of objects are achieved using the same_as operation. The copy
operation creates a new object that is equivalent to the receiver object. The new object
created is not the “same as” the original object (the same_as operation is an identity
test). Objects, once created, are explicitly deleted from the ODMS using the delete

operation. This operation will remove the object from memory, in addition to the
ODMS.

While the default locking policy of ODMG objects is implicit, all ODMG objects also
support explicit locking operations. The lock operation explicitly obtains a specific
lock on an object. If an attempt is made to acquire a lock on an object that conflicts
with that object’s existing locks, the lock operation will block until the specified lock
can be acquired, some time-out threshold is exceeded, or a transaction deadlock is
detected. If the time-out threshold is crossed, the LockNotGranted exception is raised.
If a transaction deadlock is detected, the transaction deadlock exception is raised. The
try_lock operation will attempt to acquire the specified lock and immediately return a
boolean specifying whether the lock was obtained. The try_lock operation will return
TRUE if the specified lock was obtained and FALSE if the lock to be obtained is in
conflict with an existing lock on that object. See Section 2.9 for additional information
on locking and concurrency.

The IntegrityError exception is raised by operations on relationships and signifies that
referential integrity has been violated. See Section 2.6.2 for more information on this
topic.

2.3 Objects 17

Any access, creation, modification, and deletion of persistent objects must be done
within the scope of a transaction. If attempted outside the scope of a transaction, the
TransactionNotInProgress exception is raised. For simplicity in notation, it is assumed
that all operations defined on persistent objects in this chapter have the ability to raise
the TransactionNotinProgress exception.

2.3.2 Object Identifiers

Because all objects have identifiers, an object can always be distinguished from all
other objects within its storage domain. In this release of the ODMG Object Model, a
storage domain is an ODMS. All identifiers of objects in an ODMS are unique, relative
to each other. The representation of the identity of an object is referred to as its object
identifier. An object retains the same object identifier for its entire lifetime. Thus, the
value of an object’s identifier will never change. The object remains the same object,
even if its attribute values or relationships change. An object identifier is commonly
used as a means for one object to reference another.

Note that the notion of object identifier is different from the notion of primary key in
the relational model. A row in a relational table is uniquely identified by the value of
the column(s) comprising the table’s primary key. If the value in one of those columns
changes, the row changes its identity and becomes a different row. Even traceability to
the prior value of the primary key is lost.

Literals do not have their own identifiers and cannot stand alone as objects; they are
embedded in objects and cannot be individually referenced. Literal values are some-
times described as being constant. An earlier release of the ODMG Object Model
described literals as being immutable. The value of a literal cannot change. Examples
of literal values are the numbers 7 and 3.141596, the characters A and B, and the strings
Fred and April 1. By contrast, objects, which have identifiers, have been described as
being mutable. Changing the values of the attributes of an object, or the relationships
in which it participates, does not change the identity of the object.

Object identifiers are generated by the ODMS, not by applications. There are many
possible ways to implement object identifiers. The structure of the bit pattern repre-
senting an object identifier is not defined by the Object Model, as this is considered to
be an implementation issue, inappropriate for incorporation in the Object Model.
Instead, the operation same_as() is supported, which allows the identity of any two
objects to be compared.

2.3.3 Object Names

In addition to being assigned an object identifier by the ODMS, an object may be given
one or more names that are meaningful to the programmer or end user. The ODMS

provides a function that it uses to map from an object name to an object. The applica-
tion can refer at its convenience to an object by name; the ODMS applies the mapping

18 ODMG Object Model

function to determine the object identifier that locates the desired object. ODMG
expects names to be commonly used by appllcatlons to refer to “root” objects, which
provide entry points into the ODMS.

Object names are like global variable names in programming languages. They are not
the same as keys. A key is composed of properties specified in an object type’s inter-
face. An object name, by contrast, is not defined in a type interface and does not corre-
spond to an object’s property values.

The scope of uniqueness of names is an ODMS. The Object Model does not include a
notion of hierarchical name spaces within an ODMS or of name spaces that span
ODMS:s.

2.3.4 Object Lifetimes

The lifetime of an object determines how the memory and storage allocated to the
object are managed. The lifetime of an object is specified at the time the object is
created.

Two lifetimes are supported in the Object Model:

e transient
* persistent

An object whose lifetime is transient is allocated memory that is managed by the
programming language runtime system. Sometimes a transient object is declared in the
heading of a procedure and is allocated memory from the stack frame created by the
programming language runtime system when the procedure is invoked. That memory
is released when the procedure returns. Other transient objects are scoped by a process
rather than a procedure activation and are typically allocated to either static memory
or the heap by the programming language system. When the process terminates, the
memory is deallocated. An object whose lifetime is persistent is allocated memory and
storage managed by the ODMS runtime system. These objects continue to exist after
the procedure or process that creates them terminates. Particular programming
languages may refine the notion of transient lifetimes in manners consistent with their
lifetime concepts.

An important aspect of object lifetimes is that they are independent of types. A type

may have some instances that are persistent and others that are transient. This indepen-
dence of type and lifetime is quite different from the relational model. In the relational
model, any type known to the DBMS by definition has only persistent instances, and
any type not known to the DBMS (i.e., any type not defined using SQL) by definition

2.3 Objects 19

has only transient instances. Because the ODMG Object Model supports independence
of type and lifetime, both persistent and transient objects can be manipulated using the
same operations. In the relational model, SQL must be used for defining and using
persistent data, while the programming language is used for defining and using tran-
sient data.

2.3.5 Atomic Objects

An atomic object type is user-defined. There are no built-in atomic object types
included in the ODMG Object Model. See Sections 2.6 and 2.7 for information about
the properties and behavior that can be defined for atomic objects.

2.3.6 Collection Objects

In the ODMG Object Model, instances of collection objects are composed of distinct
elements, each of which can be an instance of an atomic type, another collection, or a
literal type. Literal types will be discussed in Section 2.4. An important distinguishing
characteristic of a collection is that all the elements of the collection must be of the
same type. They are either all the same atomic type, or all the same type of collection,
or all the same type of literal.

The collections supported by the ODMG Object Model include

+ Set<t>

+ Bag<t>

e List<t>

e Array<t>

* Dictionary<t,v>

Each of these is a type generator, parameterized by the type shown within the angle
brackets. All the elements of a Set object are of the same type t. All the elements of a
List object are of the same type t. In the following interfaces, we have chosen to use the
ODL type Object to represent these typed parameters, recognizing that this can imply
a heterogeneity that is not the intent of this object model.

Collections are created by invoking the operations on the factory interfaces defined for
each particular collection. The new operation, inherited from the ObjectFactory inter-
face, creates a collection with a system-dependent default amount of storage for its
elements. The new_of_size operation creates a collection with the given amount of
initial storage allocated, where the given size is the number of elements for which
storage is to be reserved.

20 ODMG Object Model

Collections all have the following operations:

interface Collection : Object {

exception InvalidCollectionType(};
exception ElementNotFound{Object element; };
unsigned long cardinality();
boolean is_empty();
boolean is_ordered();
boolean allows_duplicates();
boolean contains_element(in Object element);
void insert_element(in Object element);
void remove_element(in Object element)
raises(ElementNotFound);
Iterator create_iterator(in boolean stable);
Bidirectionallterator create_bidirectional_iterator(in boolean stable)
raises(InvalidCollectionType);
Object select_element(in string OQL_predicate);
Iterator select(in string OQL_predicate);
boolean query(in string OQL_predicate,
inout Collection result);
boolean exists_element(in string OQL_predicate);

h
The number of elements contained in a collection is obtained using the cardinality oper-
ation. The operations is_empty, is_ordered, and allows_duplicates provide a means for
dynamically querying a collection to obtain its characteristics. Element management
within a collection is supported via the insert_element, remove_element, and
contains_element operations. The create_iterator and create_bidirectional_iterator
operations support the traversal of elements within a collection (see Iterator interface
below). The select_element, select, query, and exists_element operations are used to
evaluate OQL predicates upon the contents of a collection. The boolean results of the
query and exists_element operations indicate whether any elements were found as a
result of performing the OQL query.

In addition to the operations defined in the Collection interface, Collection objects also
inherit operations defined in the Object interface. Identity comparisons are determined
using the same_as operation. A copy of a collection returns a new Collection object
whose elements are the same as the elements of the original Collection object (i.e., this
is a shallow copy operation). The delete operation removes the collection from the
ODMS and, if the collection contains literals, also deletes the contents of the collec-
tion. However, if the collection contains objects, the collection remains unchanged.

2.3 Objects 21

An lterator, which is a mechanism for accessing the elements of a Collection object, can
be created to traverse a collection. The following operations are defined in the Iterator
interface:

interface lterator {

exception NoMoreElements(};
exception InvalidCollectionType(};
boolean is_stable();
boolean at_end();
void reset();
Object get_element() raises(NoMoreElements);
void next_position() raises(NoMoreElements);
void replace_element (in Object element)
raises(InvalidCollectionType);
I
interface Bidirectionallterator : lterator {
boolean at_beginning();
void previous_position() raises(NoMoreElements);
h

The create_iterator and create_bidirectional_iterator operations create iterators that
support forward-only traversals on all collections and bidirectional traversals of
ordered collections. The stability of an iterator determines whether an iteration is safe
from changes made to the collection during iteration. A stable iterator ensures that
modifications made to a collection during iteration will not affect traversal. If an iter-
ator is not stable, the iteration supports only retrieving elements from a collection
during traversal, as changes made to the collection during iteration may result in
missed elements or the double processing of an element. Creating an iterator automat-
ically positions the iterator to the first element in the iteration. The get_element oper-
ation retrieves the element currently pointed to by the iterator. The next_position
operation increments the iterator to the next element in the iteration. The
previous_position operation decrements the iterator to the previous element in the iter-
ation. The replace_element operation, valid when iterating over List and Array objects,
replaces the element currently pointed to by the iterator with the argument passed to
the operation. The reset operation repositions the iterator to the first element in the iter-
ation.

2.3.6.1 Set Objects

A Set object is an unordered collection of elements, with no duplicates allowed. The
following operations are defined in the Set interface:

22 ODMG Object Model

interface SetFactory : ObjectFactory {

Set new_of_size(in long size);
h
class Set : Collection {
attribute set<t> value;
Set create_union(in Set other_set);
Set create_intersection(in Set other_set);
Set create_difference(in Set other_set);
boolean is_subset_of(in Set other_set);
boolean is_proper_subset_of(in Set other_set);
boolean is_superset_of(in Set other_set);
boolean is_proper_superset_of(in Set other_set);
I

The Set type interface has the conventional mathematical set operations, as well as
subsetting and supersetting boolean tests. The create_union, create_intersection, and
create_difference operations each return a new result Set object.

Set refines the semantics of the insert_element operation inherited from its Collection
supertype. If the object passed as the argument to the insert_element operation is not
already a member of the set, the object is added to the set. Otherwise, the set remains
unchanged.

2.3.6.2 Bag Objects

A Bag object is an unordered collection of elements that may contain duplicates. The
following interfaces are defined in the Bag interface:

interface BagFactory : ObjectFactory {

Bag new_of_size(in long size);
I8
class Bag : Collection {
attribute bag<t>value;
unsigned long occurrences_of(in Object element);
Bag create_union(in Bag other_bag);
Bag create_intersection(in Bag other_bag);
Bag create_difference(in Bag other_bag);
h

The occurrences_of operation calculates the number of times a specific element occurs
in the Bag. The create_union, create_intersection, and create_difference operations
each return a new result Bag object.

Bag refines the semantics of the insert_element and remove_element operations inher-
ited from its Collection supertype. The insert_element operation inserts into the Bag

2.3 Objects

23

object the element passed as an argument. If the element is already a member of the bag,
it is inserted another time, increasing the multiplicity in the bag. The remove_element
operation removes one occurrence of the specified element from the bag.

2.3.6.3 List Objects

A List object is an ordered collection of elements. The operations defined in the List inter-
face are positional in nature, in reference either to a given index or to the beginning or
end of a List object. Indexing of a List object starts at zero. The following operations are
defined in the List interface:

interface ListFactory : ObjectFactory {

List
h

new_of_size(in long size);

class List : Collection {

exception
attribute
void
Object
void
void
void
void
void
void
void
Object
Object
List

void

h

Invalidindex{unsigned long index; };

list<t>value;

remove_element_at(in unsigned long index)
raises(Invalidindex);

retrieve_element_at(in unsigned long index)
raises(Invalidindex);

replace_element_at(in Object element, in unsigned long index)
raises(Invalidindex);

insert_element_after(in Object element, in unsigned long index)
raises(Invalidindex);

insert_element_before(in Object element, in unsigned long index)
raises(Invalidindex);

insert_element_first (in Object element);

insert_element_last (in Object element);

remove_first_element()
raises(ElementNotFound);

remove_last_element()
raises(ElementNotFound);

retrieve_first_element()
raises(ElementNotFound);

retrieve_last_elementy()
raises(ElementNotFound);

concat(in List other_list);

append(in List other_list);

The List interface defines operations for selecting, updating, and deleting elements from
a list. In addition, operations that manipulate multiple lists are defined. The concat

24 ODMG Object Model

operation returns a new List object that contains the list passed as an argument
appended to the receiver list. Both the receiver list and argument list remain
unchanged. The append operation modifies the receiver list by appending the
argument list.

List refines the semantics of the insert_element and remove_element operations inher-
ited from its Collection supertype. The insert_element operation inserts the specified
object at the end of the list. The semantics of this operation are equivalent to the list
operation insert_element_last. The remove_element operation removes the first occur-
rence of the specified object from the list.

2.3.6.4 Array Objects

An Array object is a dynamically sized, ordered collection of elements that can be
located by position. The following operations are defined in the Array interface:

interface ArrayFactory : ObjectFactory {
Array new_of_size(in long size);

b

class Array : Collection {
exception Invalidindex{unsigned long index; };
exception InvalidSize{unsigned long size; };

attribute array<t> value;

void replace_element_at(in unsigned long index, in Object element)
raises(Invalidindex);

void remove_element_at(in unsigned long index)
raises(Invalidindex);

Object retrieve_element_at(in unsigned long index)
raises(Invalidindex);

void resize(in unsigned long new_size)

raises(InvalidSize);

3
The remove_element_at operation replaces any current element contained in the cell
of the Array object identified by index with an undefined value. It does not remove the
cell or change the size of the array. This is in contrast to the remove_element_at oper-
ation, defined on type List, which does change the number of elements in a List object.
The resize operation enables an Array object to change the maximum number of
elements it can contain. The exception InvalidSize is raised, by the resize operation, if
the value of the new_size parameter is smaller than the actual number of elements
currently contained in the array.

Array refines the semantics of the insert_element and remove_element operations
inherited from its Collection supertype. The insert_element operation increases the size

2.3 Objects 25

of the array by one and inserts the specified object in the new position. The
remove_element operation replaces the first occurrence of the specified object in the
array with an undefined value.

2.3.6.5 Dictionary Objects

A Dictionary object is an unordered sequence of key-value pairs with no duplicate keys.
Each key-value pair is constructed as an instance of the following structure:

struct Association {Object key; Object value; };

Iterating over a Dictionary object will result in the iteration over a sequence of Associ-
ations. Each get_element operation, executed on an Iterator object, returns a structure
of type Association.

The following operations are defined in the Dictionary interface:

interface DictionaryFactory : ObjectFactory {

Dictionary new_of_size(in long size);
I8
class Dictionary : Collection {
exception DuplicateName{string key; };
exception KeyNotFound{Object key; };
attribute dictionary<t,v>value;
void bind(in Object key, in Object value)
raises(DuplicateName);
void unbind(in Object key) raises(KeyNotFound);
Object lookup(in Object key) raises(KeyNotFound);
boolean contains_key(in Object key);
|3

Inserting, deleting, and selecting entries in a Dictionary object are achieved using the
bind, unbind, and lookup operations, respectively. The contains_key operation tests for
the existence of a specific key in the Dictionary object.

Dictionary refines the semantics of the insert_element, remove_element, and
contains_element operations inherited from its Collection supertype. All of these oper-
ations are valid for Dictionary types when an Association is specified as the argument.
The insert_element operation inserts an entry into the Dictionary that reflects the
key-value pair contained in the Association parameter. If the key already resides in the
Dictionary, the existing entry is replaced. The remove_element operation removes the
entry from the Dictionary that matches the key-value pair contained in the Association
passed as an argument. If a matching key-value pair entry is not found in the Dictio-
nary, the ElementNotFound exception is raised. Similarly, the contains_element oper-
ation also uses both the key and value contained in the Association argument to locate

26 ODMG Object Model

a particular entry in the Dictionary object. A boolean is returned specifying whether the
key-value pair exists in the Dictionary.

2.3.7 Structured Objects

All structured objects support the Object ODL interface. The ODMG Object Model
defines the following structured objects:

« Date
* Interval
e Time

* Timestamp

These types are defined as in the INCITS SQL specification by the following inter-
faces.

2.3.7.1 Date

The following interface defines the factory operations for creating Date objects:

interface DateFactory : ObjectFactory {
exception InvalidDate(};
Date julian_date(in unsigned short year,
in unsigned short julian_day)
raises(InvalidDate);
Date calendar_date(in unsigned short year,
in unsigned short month,
in unsigned short day)
raises(InvalidDate);
boolean is_leap_year(in unsigned short year);
boolean is_valid_date(in unsigned short year,
in unsigned short month,
in unsigned short day);
unsigned short days_in_year(in unsigned short year);
unsigned short days_in_month(in unsigned short year,
in Date::Month month);
Date current();

2.3 Objects 27

The following interface defines the operations on Date objects:

class Date : Object {

enum Weekday {Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday};
enum Month {January, February, March, April, May, June, July,
August, September, October, November,
December};
attribute date value;

unsigned short year();
unsigned short month();
unsigned short day();
unsigned short day_of_year();

Month month_of_year();

Weekday day_of_week();

boolean is_leap_year();

boolean is_equal(in Date a_date);

boolean is_greater(in Date a_date);

boolean is_greater_or_equal(in Date a_date);
boolean is_less(in Date a_date);

boolean is_less_or_equal(in Date a_date);
boolean is_between(in Date a_date, in Date b_date);
Date next(in Weekday day);

Date previous(in Weekday day);

Date add_days(in long days);

Date subtract_days(in long days);

long subtract_date(in Date a_date);

b

2.3.7.2 Interval

Intervals represent a duration of time and are used to perform some operations on Time
and Timestamp objects. Intervals are created using the subtract_time operation defined
in the Time interface below. The following interface defines the operations on Interval
objects:

28

ODMG Object Model

class Interval : Object {

attribute
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
boolean
Interval
Interval

Interval

Interval

boolean
boolean
boolean
boolean
boolean

b

2.3.7.3 Time

interval value;

day();

hour();

minute();

second();

millisecond();

is_zero();

plus(in Interval an_interval);
minus(in Interval an_interval);

product(in long val);

quotient(in long val);

is_equal(in Interval an_interval);
is_greater(in Interval an_interval);
is_greater_or_equal(in Interval an_interval);
is_less(in Interval an_interval);
is_less_or_equal(in Interval an_interval);

Times denote specific world times, which are internally stored in Greenwich Mean
Time (GMT). Time zones are specified according to the number of hours that must be
added or subtracted from local time in order to get the time in Greenwich, England.

The following interface defines the factory operations for creating Time objects:

interface TimeFactory : ObjectFactory {

void
TimeZone
TimeZone
Time

Time

Time

set_default_time_zone(in TimeZone a_time_zone);
default_time_zone();
time_zone();
from_hmsm(in unsigned short hour,
in unsigned short minute,
in unsigned short second,
in unsigned short millisecond);
from_hmsmtz(in unsigned short hour,
in unsigned short minute,
in unsigned short second,
in unsigned short millisecond,
in short tzhour,
in short tzminute);
current();

2.3 Objects

29

The following interface defines the operations on Time objects:

class Time : Object {

attribute time
typedef short

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone
TimeZone

value;

TimeZoneTimeZone;
GMT = 0;
GMT1 =1;
GMT2 =2;
GMT3 =3;
GMT4 = 4;
GMT5 = 5;
GMT6 = 6;
GMT7 =7,
GMTS8 = 8;
GMT9=9;
GMT10 = 10;
GMT11 =11;
GMT12 =12;
GMT_1=-1;
GMT_2 =-2;
GMT_8=-3;
GMT_4 =-4;
GMT_5 =-5;
GMT_6 =-6;
GMT_7 =-7,
GMT_8=-8;
GMT_9=-9;
GMT_10 =-10;
GMT_11 =-11;
GMT_12 =-12;
USeastern = -5;
UScentral = -6;

USmountain = -7;
USpacific = -8;

30 ODMG Object Model

unsigned short hour();
unsigned short minute();
unsigned short second();
unsigned short millisecond();

short tz_hour();
short tz_minute();
boolean is_equal(in Time a_time);
boolean is_greater(in Time a_time);
boolean is_greater_or_equal(in Time a_time);
boolean is_less(in Time a_time);
boolean is_less_or_equal(in Time a_time);
boolean is_between(in Time a_time,
in Time b_time);
Time add_interval(in Interval an_interval);
Time subtract_interval(in Interval an_interval);
Interval subtract_time(in Time a_time);
2
2.3.7.4 Timestamp

Timestamps consist of an encapsulated Date and Time. The following interface defines
the factory operations for creating Timestamp objects:

interface TimestampFactory : ObjectFactory {

exception InvalidTimestamp{Date a_date, Time a_time; };
Timestamp current();
Timestamp create(in Date a_date, in Time a_time)

raises(InvalidTimestamp);

2.4 Literals

31

The following interface defines the operations on Timestamp objects:

class Timestamp : Object {

attribute

Date

Time

unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
short

short
Timestamp
Timestamp
boolean
boolean
boolean
boolean
boolean
boolean

L
2.4 Literals

timestamp value;

get_date();

get_time();

year();

month();

day();

hour();

minute();

second();

millisecond();

tz_hour();

tz_minute();

plus(in Interval an_interval);

minus(in Interval an_interval);

is_equal(in Timestamp a_stamp);

is_greater(in Timestamp a_stamp);

is_greater_or_equal(in Timestamp a_stamp);

is_less(in Timestamp a_stamp);

is_less_or_equal(in Timestamp a_stamp);

is_between(in Timestamp a_stamp,
in Timestamp b_stamp);

This section considers each of the following aspects of literals:

* types, which includes a description of the types of literals supported by the

standard

« copying, which refers to the manner in which literals are copied

» comparing, which refers to the manner in which literals are compared

» equivalence, which includes the method for determining when two literals

are equivalent

2.4.1 Literal Types

The Object Model supports the following literal types:

e atomic literal

« collection literal
» structured literal

32 ODMG Object Model

2.4.1.1 Atomic Literals

Numbers and characters are examples of atomic literal types. Instances of these types
are not explicitly created by applications, but rather implicitly exist. The ODMG
Object Model supports the following types of atomic literals:

+ long

* long long

+ short

» unsigned long
* unsigned short

+ float

+ double

* boolean
* octet

» char (character)
+ string
¢ enum (enumeration)

These types are all also supported by the OMG Interface Definition Language (IDL).
The intent of the Object Model is that a programming language binding should support
the language-specific analog of these types, as well as any other atomic literal types
defined by the programming language. If the programming language does not contain
an analog for one of the Object Model types, then a class library defining the imple-
mentation of the type should be supplied as part of the programming language binding.

Enum is a type generator. An enum declaration defines a named literal type that can
take on only the values listed in the declaration. For example, an attribute gender might
be defined by

attribute enum gender {male, female};
An attribute state_code might be defined by
attribute enum state_code {AK,AL,AR,AZ,CA,...,WY};

2.4.1.2 Collection Literals
The ODMG Object Model supports collection literals of the following types:

o set<t>

* Dbag<t>

o list<t>

» array<t>

+ dictionary<t,v>

2.4 Literals 33

These type generators are analogous to those of collection objects, but these collections
do not have object identifiers. Their elements, however, can be of literal types or object

types.

2.4.1.3 Structured Literals

A structured literal, or simply structure, has a fixed number of elements, each of which
has a variable name and can contain either a literal value or an object. An element of a
structure is typically referred to by a variable name, for example, address.zip_code =
12345; address.city = "San Francisco". Structure types supported by the ODMG Object
Model include

* date
e interval
* time

e timestamp

2.4.1.3.1 User-Defined Structures

Because the Object Model is extensible, developers can define other structure types as
needed. The Object Model includes a built-in type generator struct, to be used to define
application structures. For example:

struct Address {
string dorm_name;
string room_no;

}

attribute Address dorm_address;

Structures may be freely composed. The Object Model supports sets of structures, struc-
tures of sets, arrays of structures, and so forth. This composability allows the definition
of types like Degrees, as a list whose elements are structures containing three fields:

struct Degree {
string school_name;
string degree_type;
unsigned short degree_year;
%
typedef list<Degree> Degrees;
Each Degrees instance could have its elements sorted by value of degree_year.
Each language binding will map the Object Model structures and collections to mecha-

nisms that are provided by the programming language. For example, Smalltalk includes
its own Collection, Date, Time, and Timestamp classes.

34 ODMG Object Model

2.4.2 Copying Literals

Literals do not have object identifiers and, therefore, cannot be shared. However, literals
do have copy semantics. For example, when iterating through a collection of literals,
copies of the elements are returned. Likewise, when returning a literal-valued attribute of
an object, a copy of the literal value is returned.

2.4.3 Comparing Literals

Since literals do not have object identifiers (not objects), they cannot be compared by
identity (i.e., the same_as operation). As a result, they are compared using the equals
equivalence operation. This becomes important for collection management. For
example, when inserting, removing, or testing for membership in a collection of literals,
the equivalence operation equals is used rather than the identity operation same_as.

2.4.4 Literal Equivalence

Two literals, x and y, are considered equivalent (or equal) if they have the same literal
type and

+ are both atomic and contain the same value
» are both sets, have the same parameter type t, and

« iftis aliteral type, then for each element in x, there is an element
in y that is equivalent to it, and, for each element in y, there is an
element in x that is equivalent to it

» if tis an Object type, then both x and y contain the same set of
object identifiers

« are both bags, have the same parameter type t, and

» iftis a literal type, then for each element in x, there is an element
in y that is equivalent to it, and, for each element in y, there is an
element in x that is equivalent to it. In addition, for each literal
appearing more than once in X, there is an equivalent literal
occurring the same number of times in y

« if tis an Object type, then both x and y contain the same set of
object identifiers. In addition, for each object identifier appearing
more than once in X, there is an identical object identifier appear-
ing the same number of times in y

2.5 The Full Built-in Type Hierarchy 35

» are both arrays or lists, have the same parameter type t, and for each entry i
« iftis aliteral type, then x[i] is equivalent to y[i] (equal)
« if tis an object type, then x[i] is identical to y[i] (same_as)

« are both dictionary literals, and when considered sets of associations, the two
sets are equivalent
» are both structs of the same type, and for each element j
« if the element is a literal type, then x.j and y.j are equivalent
(equal)
« if the element is an object type, then x.j and y.j are identical
(same_as)

2.5 The Full Built-in Type Hierarchy

Figure 2-3 shows the full set of built-in types of the Object Model type hierarchy.
Concrete types are shown in nonitalic font and are directly instantiable. Abstract types
are shown in italics. In the interest of simplifying matters, both types and type genera-
tors are included in the same hierarchy. Type generators are signified by angle brackets
(e.g., Set<>).

The ODMG Object Model is strongly typed. Every object or literal has a type, and
every operation requires typed operands. The rules for type identity and type compat-
ibility are defined in this section.

Two objects or literals have the same type if and only if they have been declared to be
instances of the same named type. Objects or literals that have been declared to be
instances of two different types are not of the same type, even if the types in question
define the same set of properties and operations. Type compatibility follows the
subtyping relationships defined by the type hierarchy. If TS is a subtype of T, then an
object of type TS can be assigned to a variable of type T, but the reverse is not possible.
No implicit conversions between types are provided by the Object Model.

Two atomic literals have the same type if they belong to the same set of literals.
Depending on programming language bindings, implicit conversions may be provided
between the scalar literal types, that is, long, short, unsigned long, unsigned short, float,
double, boolean, octet, and char. No implicit conversions are provided for structured
literals.

ODMG Object Model

Literal_type
Atomic_literal
long
long long
short
unsigned long
unsigned short
float
double
boolean
octet
char
string
enum<>
Collection_literal
set<>
bag<>
list<>
array<>
dictionary<>
Structured_literal
date
time
timestamp
interval
structure<>
Object_type
Atomic_object
Collection_object

Set<>

Bag<>

List<>

Array<>

Dictionary<>
Structured_object

Date

Time’

Timestamp

Interval

Figure 2-3. Full Set of Built-in Types

2.6 Modeling State—Properties 37

2.6 Modeling State—Properties

A class defines a set of properties through which users can access, and in some cases
directly manipulate, the state of instances of the class. Two kinds of properties are
defined in the ODMG Object Model: attribute and relationship. An attribute is of one
type. A relationship is defined between two types, each of which must have instances
that are referenceable by object identifiers. Thus, literal types, because they do not
have object identifiers, cannot participate in relationships.

2.6.1 Attributes

The attribute declarations in a class define the abstract state of its instances. For
example, the class Person might contain the following attribute declarations:

class Person {
attribute short age;
attribute string name;
attribute enum gender {male, female};
attribute Address home_address;
attribute set<Phone_no> phones;
attribute Department dept;
I8
A particular instance of Person would have a specific value for each of the defined
attributes. The value for the dept attribute above is the object identifier of an instance
of Department. An attribute’s value is always either a literal or an object.

It is important to note that an attribute is not the same as a data structure. An attribute
is abstract, while a data structure is a physical representation.

In contrast, attribute declarations in an interface define only abstract behavior of its
instances. While it is common for attributes to be implemented as data structures, it is
sometimes appropriate for an attribute to be implemented as a method. For example, if
the age operation were defined in an interface, the presence of this attribute would not
imply state, but rather the ability to compute the age (e.g., from the birthdate of the
person). For example:

interface i_Person {
attribute short age;

k

class Person : i_Person {
attribute Date birthdate;
attribute string name;
attribute enum gender {male, female};
attribute Address home_address;
attribute set<Phone_no> phones;
attribute Department dept;

38 ODMG Object Model

2.6.2 Relationships

Relationships are defined between types. The ODMG Object Model supports only
binary relationships, i.e., relationships between two types. The model does not support
n-ary relationships, which involve more than two types. A binary relationship may be
one-to-one, one-to-many, or many-to-many, depending on how many instances of
each type participate in the relationship. For example, marriage is a one-to-one rela-
tionship between two instances of type Person. A person can have a one-to-many
parent of relationship with many children. Teachers and students typically participate
in many-to-many relationships. Relationships in the Object Model are similar to rela-
tionships in entity-relationship data modeling.

A relationship is defined explicitly by declaration of traversal paths that enable appli-
cations to use the logical connections between the objects participating in the relation-
ship. Traversal paths are declared in pairs, one for each direction of traversal of the
relationship. For example, a professor teaches courses and a course is taught by a
professor. The teaches traversal path would be defined in the declaration for the
Professor type. The is_taught_by traversal path would be defined in the declaration for
the Course type. The fact that these traversal paths both apply to the same relationship
is indicated by an inverse clause in both of the traversal path declarations. For example:

class Professor {

relationship set<Course> teaches
inverse Course::is_taught_by;

and

class Course {

relationship Professor is_taught_by
inverse Professor::teaches;

}

The relationship defined by the teaches and is_taught_by traversal paths is a
one-to-many relationship between Professor and Course objects. This cardinality is
shown in the traversal path declarations. A Professor instance is associated with a set
of Course instances via the teaches traversal path. A Course instance is associated
with a single Professor instance via the is_taught_by traversal path.

Traversal paths that lead to many objects can be unordered or ordered, as indicated by
the type of collection specified in the traversal path declaration. If set is used, as in
set<Course>, the objects at the end of the traversal path are unordered.

2.6 Modeling State—Properties 39

The ODMS is responsible for maintaining the referential integrity of relationships.
This means that if an object that participates in a relationship is deleted, then any
traversal path to that object must also be deleted. For example, if a particular Course
instance is deleted, then not only is that object’s reference to a Professor instance via
the is_taught_by traversal path deleted, but also any references in Professor objects to
the Course instance via the teaches traversal path must also be deleted. Maintaining
referential integrity ensures that applications cannot dereference traversal paths that
lead to nonexistent objects.

attribute Student top_of_class;

An attribute may be object-valued. This kind of attribute enables one object to refer-
ence another, without expectation of an inverse traversal path or referential integrity.
While object-valued attributes may be used to implement so-called unidirectional rela-
tionships, such constructions are not considered to be true relationships in this stan-
dard. Relationships always guarantee referential integrity.

It is important to note that a relationship traversal path is not equivalent to a pointer. A
pointer in C++, or an object reference in Smalltalk or Java, has no connotation of a
corresponding inverse traversal path that would form a relationship. The operations
defined on relationship parties and their traversal paths vary according to the traversal
path’s cardinality.

The implementation of relationships is encapsulated by public operations that form and
drop members from the relationship, plus public operations on the relationship target
classes to provide access and to manage the required referential integrity constraints.
When the traversal path has cardinality “one,” operations are defined to form a rela-
tionship, to drop a relationship, and to traverse the relationship. When the traversal
path has cardinality “many,” the object will support methods to add and remove
elements from its traversal path collection. Traversal paths support all of the behaviors
defined previously on the Collection class used to define the behavior of the relation-
ship. Implementations of form and drop operations will guarantee referential integrity
in all cases. In order to facilitate the use of ODL object models in situations where such
models may cross distribution boundaries, we define the relationship interface in
purely procedural terms by introducing a mapping rule from ODL relationships to
equivalent IDL constructions. Then, each language binding will determine the exact
manner in which these constructions are to be accessed.

As in attributes, declarations of relationships that occur within classes define abstract
state for storing the relationship and a set of operations for accessing the relationship.
Declarations that occur within interfaces define only the operations of the relationship,
not the state.

40 ODMG Object Model

2.6.2.1 Cardinality “One” Relationships

For relationships with cardinality “one” such as
relationship X Y inverse Z;

we expand the relationship to an equivalent IDL attribute and operations:

attribute XY,
void form_Y(in X target) raises(IntegrityError);
void drop_Y(in X target) raises (IntegrityError);

For example, the relationship in the preceding example interface Course would result
in the following definitions (on the class Course):

attribute Professor is_taught_by;

void form_is_taught_by(in Professor aProfessor)
raises(IntegrityError);

void drop_is_taught_by(in Professor aProfessor)

raises(IntegrityError);

2.6.2.2 Cardinality “Many” Relationships
For ODL relationships with cardinality “many” such as

relationship set<X> Y inverse Z;

we expand the relationship to an equivalent IDL attribute and operations. To convert
these definitions into pure IDL, the ODL collection need only be replaced by the
keyword sequence. Note that the add_Y operation may raise an IntegrityError exception
in the event that the traversal is a set that already contains a reference to the given
target X. This exception, if it occurs, will also be raised by the form_Y operation that
invoked the add_Y. For example:

readonly attribute set<X>Y;

void form_Y(in X target) raises(IntegrityError);
void drop_Y(in X target) raises(IntegrityError);
void add_Y(in X target) raises(IntegrityError);

void remove_Y(in X target) raises(IntegrityError);

2.7 Modeling Behavior—Operations 41

The relationship in the preceding example interface Professor would result in the
following definitions (on the class Professor):

readonly attribute set<Course> teaches;

void form_teaches(in Course aCourse)
raises(IntegrityError);

void drop_teaches(in Course aCourse)
raises(IntegrityError);

void add_teaches(in Course aCourse)
raises(IntegrityError);

void remove_teaches(in Course aCourse)

raises(IntegrityError);

2.7 Modeling Behavior—Operations

Besides the attribute and relationship properties, the other characteristic of a type is its
behavior, which is specified as a set of operation signatures. Each signature defines
the name of an operation, the name and type of each of its arguments, the types of
value(s) returned, and the names of any exceptions (error conditions) the operation can
raise. Our Object Model specification for operations is identical to the OMG CORBA
specification for operations.

An operation is defined on only a single type. There is no notion in the Object Model
of an operation that exists independent of a type or of an operation defined on two or
more types. An operation name need be unique only within a single type definition.
Thus, different types could have operations defined with the same name. The names of
these operations are said to be overloaded. When an operation is invoked using an
overloaded name, a specific operation must be selected for execution. This selection,
sometimes called operation name resolution or operation dispatching, is based on the
most specific type of the object supplied as the first argument of the actual call.

The ODMG had several reasons for choosing to adopt this single-dispatch model
rather than a multiple-dispatch model. The major reason was for consistency with the
C++, Smalltalk, and Java programming languages. This consistency enables seamless
integration of ODMSs into the object programming environment. Another reason to
adopt the classical object model was to avoid incompatibilities with the OMG CORBA
object model, which is classical rather than general.

An operation may have side effects. Some operations may return no value. The ODMG
Object Model does not include formal specification of the semantics of operations. It
is good practice, however, to include comments in interface specifications, for
example, remarking on the purpose of an operation, any side effects it might have, pre-
and post-conditions, and any invariants it is intended to preserve.

42 ODMG Object Model

The Object Model assumes sequential execution of operations. It does not require
support for concurrent or parallel operations, but does not preclude an ODMS from
taking advantage of multiprocessor support.

2.7.1 Exception Model

The ODMG Object Model supports dynamically nested exception handlers, using a
termination model of exception handling. Operations can raise exceptions, and excep-
tions can communicate exception results. Mappings for exceptions are defined by each
language binding. When an exception is raised, information on the cause of the excep-
tion is passed back to the exception handler as properties of the exception. Control is
as follows:

1. The programmer declares an exception handler within scope s capable of
handling exceptions of type t.

An operation within a contained scope sn may “raise” an exception of type t.

The exception is “caught” by the most immediately containing scope that
has an exception handler. The call stack is automatically unwound by the
runtime system out to the level of the handler. Memory is freed for all
objects allocated in intervening stack frames. Any transactions begun within
a nested scope, that is, unwound by the runtime system in the process of
searching up the stack for an exception handler, are aborted.

4. When control reaches the handler, the handler may either decide that it can
handle the exception or pass it on (reraise it) to a containing handler.

An exception handler that declares itself capable of handling exceptions of type t will
also handle exceptions of any subtype of t. A programmer who requires more specific
control over exceptions of a specific subtype of t may declare a handler for this more
specific subtype within a contained scope.

2.8 Metadata

Metadata is descriptive information about persistent objects that defines the schema of
an ODMS. Metadata is used by the ODMS to define the structure of its object storage,
and at runtime, guides access to the ODMS’s persistent objects. Metadata is stored in
an ODL Schema Repository, which is also accessible to tools and applications using
the same operations that apply to user-defined types. In OMG CORBA environments,
similar metadata is stored in an IDL Interface Repository.

The following interfaces define the internal structure of an ODL Schema Repository.
These interfaces are defined in ODL using relationships that define the graph of inter-
connections between meta objects, which are produced, for example, during ODL
source compilation. While these relationships guarantee the referential integrity of the
meta object graph, they do not guarantee its semantic integrity or completeness. In
order to provide operations that programmers can use to correctly construct valid

2.8 Metadata 43

schemas, several creation, addition, and removal operations are defined that provide
automatic linking and unlinking of the required relationships and appropriate error
recovery in the event of semantic errors.

All of the meta object definitions, defined below, are to be grouped into an enclosing
module that defines a name scope for the elements of the model.

module ODLMetaObjects {
// the following interfaces are defined here

h
2.8.1 Scopes

Scopes define a naming hierarchy for the meta objects in the repository. They support
a bind operation for adding meta objects, a resolve operation for resolving path names
within the repository, and an unbind operation for removing bindings.

interface Scope {

exception DuplicateName({};
exception NameNotFound{string reason; };
void bind(in string name, in MetaObject value)
raises(DuplicateName);
MetaObject resolve(in string name) raises(NameNotFound);
void unbind(in string name) raises(NameNotFound);
list<RepositoryObject> children();
h
2.8.2 Visitors

Visitors provide a convenient “double dispatch” mechanism for traversing the meta
objects in the repository. To utilize this mechanism, a client must implement a Repos-
itoryObjectVisitor object that responds to the visit_... callbacks in an appropriate
manner. Then, by passing this visitor to one of the meta objects in the repository, an
appropriate callback will occur that may be used as required by the client object.

enum MetaKind {mk_attribute, mk_class, mk_collection, mk_constant,
mk_const_operand, mk_enumeration, mk_exception,
mk_expression, mk_interface, mk_literal, mk_member,
mk_module, mk_operation, mk_parameter, mk_primitive_type,
mk_relationship, mk_repository, mk_structure,
mk_type_definition, mk_union, mk_union_case };

interface RepositoryObject {
void accept_visitor(in RepositoryObijectVisitor a_repository_object_visitor);
Scope parent();
readonly attribute MetaKind meta_kind;

ODMG Object Model

interface RepositoryObijectVisitor {

b

void visit_attribute(in Attribute an_attribute);

void visit_class(in Class a_class);

void visit_collection(in Collection a_collection);

void visit_constant(in Constant a_constant);

void visit_const_operand(in ConstOperand a_const_operand);
void visit_enumeration(in Enumeration an_enumeration);
void visit_exception(in Exception an_exception);

void visit_expression(in Expression an_expression);

void visit_interface(in Interface an_interface);

void visit_literal(in Literal a_literal);

void visit_member(in Member a_member);

void visit_module(in Module a_module);

void visit_operation(in Operation an_operation);

void visit_parameter(in Parameter a_parameter);

void visit_primitive_type(in PrimitiveType a_primitive_type);
void visit_relationship(in Relationship a_relationship);

void visit_repository(in Repository a_repository);

void visit_structure(in Structure a_structure);

void visit_type_definition(in TypeDefinition a_type_definition);
void visit_union(in Union an_union);

void visit_union_case(in UnionCase an_union_case);

2.8.3 Meta Objects

All objects in the repository are subclasses of three main interfaces: MetaObject, Spec-
ifier, and Operand. All MetaObjects, defined below, have name and comment
attributes. They participate in a single definedIn relationship with other meta objects,
which are their defining scopes. DefiningScopes are Scopes that contain other meta
object definitions using their defines relationship and that have operations for creating,
adding, and removing meta objects within themselves.

typedef string ScopedName;

interface MetaObject : RepositoryObject {

attribute string name;
attribute string comment;
relationship DefiningScope definedin

inverse DefiningScope::defines;
ScopedName absolute_name();

2.8 Metadata 45

enum PrimitiveKind {pk_boolean, pk_char, pk_date, pk_short,

pk_unsigned_short, pk_date, pk_time, pk_timestamp,
pk_long, pk_unsigned_long, pk_long_long, pk_float,
pk_double, pk_octet, pk_interval, pk_void};

enum CollectionKind {ck_list, ck_array, ck_bag, ck_set, ck_dictionary,

ck_sequence, ck_string };

interface DefiningScope : Scope {

relationship list<MetaObject>defines
inverse MetaObject::definedIn;

exception InvalidType({string reason; };

exception InvalidExpression{string reason; };

exception CannotRemove{string reason; };

PrimitiveType create_primitive_type(in PrimitiveKind primitive_kind);

Collection create_collection(in CollectionKind collection_kind,
in Operand max_size, in Type sub_type);

Dictionary create_dictionary_type(in Type key_type,
in Type sub_type);

Operand create_operand(in string expression)
raises(InvalidExpression);

Member create_member(in string member_name,
in Type member_type);

UnionCase create_union_case(in string case_name,
in Type case_type,
in list<Operand> caselLabels)
raises(DuplicateName, InvalidType);

Constant add_constant(in string name, in Type type,
in Operand value)
raises(DuplicateName);

TypeDefinition add_type_definition(in string name, in Type alias)
raises(DuplicateName);

Enumeration add_enumeration(in string name,
in list<string> element_names)
raises(DuplicateName, InvalidType);

Structure add_structure(in string name, in list<Member> fields)
raises(DuplicateName, InvalidType);

Union add_union(in string name, In Type switch_type,
in list<UnionCase> cases)
raises(DuplicateName, InvalidType);

Exception add_exception(in string name, in Structure result)

raises(DuplicateName);

46 ODMG Object Model

void remove_constant(in Constant object)
raises(CannotRemove);

void remove_type_definition(in TypeDefinition object)
raises(CannotRemove);

void remove_enumeration(in Enumeration object)
raises(CannotRemove);

void remove_structure(in Structure object)
raises(CannotRemove);

void remove_union(in Union object) raises(CannotRemove);

void remove_exception(in Exception object)
raises(CannotRemove);

b

2.8.3.1 Modules

Modules and the Schema Repository itself, which is a specialized module, are Defin-
ingScopes that define operations for creating modules and interfaces within them-
selves.

interface Module : MetaObject, DefiningScope {
Module add_module(in string name) raises(DuplicateName);
Interface add_interface(in string name, in list<Interface> inherits)
raises(DuplicateName);
Class add_class(in string name, in list<Interface> inherits,
in Class extender)
raises(DuplicateName);

void remove_module(in Module object) raises(CannotRemove);
void remove_interface(in Interface object) raises(CannotRemove);
void remove_class(in Class object) raises(CannotRemove);

I8
interface Repository : Module {};

2.8.3.2 Operations

Operations model the behavior that application objects support. They maintain a signa-
ture list of Parameters and refer to a result type. Operations may raise Exceptions.

interface Operation : MetaObject, Scope {

relationship list<Parameter> signature
inverse Parameter::operation;

relationship Type result
inverse Type::operations;

relationship list<Exception> exceptions

inverse Exception::operations;

2.8 Metadata 47

2.8.3.3 Exceptions

Operations may raise Exceptions and thereby return a different set of results. Excep-
tions refer to a Structure that defines their results and keep track of the Operations that
may raise them.

interface Exception : MetaObject {

relationship Structure result
inverse Structure::exception_result;
relationship set<Operation> operations
inverse Operation::exceptions;
%
2.8.3.4 Constants

Constants provide a mechanism for statically associating values with names in the
repository. The value is defined by an Operand subclass that is either a literal value
(Literal), a reference to another Constant (ConstOperand), or the value of a constant
expression (Expression). Each constant has an associated type and keeps track of the
other ConstOperands that refer to it in the repository. The value operation allows the
constant’s actual value to be computed at any time.

interface Constant : MetaObject {

relationship Operand the_Value
inverse Operand::value_of;
relationship Type type
inverse Type::constants;
relationship set<ConstOperand> referenced_by
inverse ConstOperand::references;
relationship Enumeration enumeration
inverse Enumeration::elements;
Object value();

k
2.8.3.5 Properties
Properties form an abstract class over the Attribute and Relationship meta objects that

define the abstract state of an application object. They have an associated type.

interface Property : MetaObject {
relationship Type type
inverse Type::properties;

48 ODMG Object Model

2.8.3.5.1 Attributes
Attributes are properties that maintain simple abstract state. They may be read-only, in
which case there is no associated accessor for changing their values.

interface Attribute : Property {
attribute boolean is_read_only;

k
2.8.3.5.2 Relationships
Relationships model bilateral object references between participating objects. In use,
two relationship meta objects are required to represent each traversal direction of the
relationship. Operations are defined implicitly to form and drop the relationship, as
well as accessor operations for manipulating its traversals.

enum Cardinality {c1_1, c1_N, cN_1, cN_M},

interface Relationship : Property {

relationship Relationship traversal
inverse Relationship::traversal;
Cardinality get_cardinality();
2
2.8.3.6 Types

TypeDefinitions are meta objects that define new names, or aliases, for the types to
which they refer. Much of the information in the repository consists of type definitions
that define the datatypes used by the application.

interface TypeDefinition : Type {
relationship Type alias
inverse Type::type_defs;

k
Type meta objects are used to represent information about datatypes. They participate
in a number of relationships with the other meta objects that use them. These relation-
ships allow Types to be easily administered within the repository and help to ensure
the referential integrity of the repository as a whole.

2.8 Metadata 49

interface Type : MetaObject {

relationship set<Collection> collections
inverse Collection::subtype;
relationship set<Dictionary> dictionaries
inverse Dictionary::key_type;
relationship set<Specifier> specifiers
inverse Specifier::type;
relationship set<Union> unions
inverse Union::switch_type;
relationship set<Operation> operations
inverse Operation::result;
relationship set<Property> properties
inverse Property::type;
relationship set<Constant> constants
inverse Constant::type;
relationship set<TypeDefinition> type_defs
inverse TypeDefinition::alias;
h
interface PrimitiveType : Type {
readonly attribute PrimitiveKind primitive_kind;
3

2.8.3.6.1 Interfaces

interfaces are the most important types in the repository. Interfaces define the abstract
behavior of application objects and contain operations for creating and removing
Attributes, Relationships, and Operations within themselves in addition to the opera-
tions inherited from DefiningScope. Interfaces are linked in a multiple-inheritance
graph with other Inheritance objects by two relationships, inherits and derives. They
may contain most kinds of MetaObjects, except Modules and Interfaces.

interface Interface : Type, DefiningScope {
struct ParameterSpec {

string param_name;
Direction param_mode;
Type param_type; };
relationship set<Interface> inherits
inverse Interface::derives;
relationship set<Interface> derives
inverse Interface::inherits;
exception BadParameter{string reason; };

exception BadRelationship{string reason; };

50 ODMG Object Model

Attribute add_attribute(in string attr_name, in Type attr_type)
raises(DuplicateName);
Relationship add_relationship(in string rel_name,

in Type rel_type,

in Relationship rel_traversal)
raises(DuplicateName, BadRelationship);

Operation add_operation(in string op_name,

in Type op_result,

in list<ParameterSpec> op_params,
in list<Exception> op_raises)
raises(DuplicateName, BadParameter);

void remove_attribute(in Attribute object)
raises(CannotRemove);

void remove_relationship(in Relationship object)
raises(CannotRemove);

void remove_operation(in Operation object)
raises(CannotRemove);

%
2.8.3.6.2 Classes

Classes are a subtype of Interface whose properties define the abstract state of objects
stored in an ODMS. Classes are linked in a single inheritance hierarchy whereby state
and behavior are inherited from an extender class. Classes may define keys and
extents over their instances.

interface Class : Interface {

attribute list<string> extents;

attribute list<string> keys;

relationship Class extender
inverse Class::extensions;

relationship set<Class> extensions
inverse Class::extender;

|3
2.8.3.6.3 Collections

Collections are types that aggregate variable numbers of elements of a single subtype
and provide different ordering, accessing, and comparison behaviors. The maximum

size of the collection may be specified by a constant or constant expression. If unspec-
ified, this relationship will be bound to the literal 0.

2.8 Metadata 51

interface Collection : Type {

readonly attribute CollectionKind collection_kind;
relationship Operand max_size
inverse Operand::size_of;
relationship Type subtype
inverse Type::collections;
boolean is_ordered();
unsigned long bound();
2
interface Dictionary : Collection {
relationship Type key_type
inverse Type::dictionaries;
¥

2.8.3.6.4 Constructed Types

Some types contain named elements that themselves refer to other types and are said
to be constructed from those types. The ScopedType interface is an abstract class that
consolidates these mechanisms for its subclasses Enumeration, Structure, and Union.
Enumerations contain Constants, Structures contain Members, and Unions contain
UnionCases. Unions, in addition, have a relationship with a switch_type that defines
the discriminator of the union.

interface ScopedType : Scope, Type {};
interface Enumeration : ScopedType {
relationship list<Constant> elements
inverse Constant::enumeration;

I3
interface Structure : ScopedType {
relationship list<Member> fields
inverse Member::structure_type;
relationship Exception exception_result
inverse Exception::result;
I3
interface Union : ScopedType {
relationship Type switch_type
inverse Type::unions;
relationship list<UnionCase> cases

inverse UnionCase::union_type;

52 ODMG Object Model

2.8.4 Specifiers

Specifiers are used to assign a name to a type in certain contexts. They consolidate
these elements for their subclasses. Members, UnionCases, and Parameters are refer-
enced by Structures, Unions, and Operations, respectively.

interface Specifier : RepositoryObject {

attribute string name;
relationship Type type
inverse Type::specifiers;
h
interface Member : Specifier {
relationship Structure structure_type
inverse Structure::fields;
b
interface UnionCase : Specifier {
relationship Union union_type
inverse Union::cases;
relationship list<Operand> case_labels
inverse Operand::case_in;
k

enum Direction {mode_in, mode_out, mode_inout } ;
interface Parameter : Specifier {

attribute Direction parameter_mode;
relationship Operation operation
inverse Operation::signature;
I3
2.8.5 Operands

Operands form the base type for all constant values in the repository. They have a
value operation and maintain relationships with the other Constants, Collections,
UnionCases, and Expressions that refer to them. Literals contain a single literalValue
attribute and produce their value directly. ConstOperands produce their value by dele-
gating to their associated constant. Expressions compute their value by evaluating
their operator on the values of their operands.

2.9 Locking and Concurrency Control 53

interface Operand : RepositoryObject {

relationship Expression operand_in

inverse Expression::the_operands;
relationship Constant value_of

inverse Constant::the_value;
relationship Collection size_of

inverse Collection::max_size;
relationship UnionCase case_in

inverse UnionCase::case_labels;
Object value();

I8
interface Literal : Operand {
attribute Object literal_value;

|3
interface ConstOperand : Operand {
relationship Constant references
inverse Constant::referenced_by;
2

Expressions are composed of one or more Operands and an associated operator. While
unary and binary operators are the only operations allowed by ODL, this structure
allows generalized n-ary operations to be defined in the future.

interface Expression : Operand {
attribute string operator;
relationship list<Operand> the_operands
inverse Operand::operand_in;

%

2.9 Locking and Concurrency Control

The ODMG Object Model uses a conventional lock-based approach to concurrency
control. This approach provides a mechanism for enforcing shared or exclusive access
to objects. The ODMS supports the property of serializability by monitoring requests
for locks and granting a lock only if no conflicting locks exist. As a result, access to
persistent objects is coordinated across multiple transactions, and a consistent view of
the ODMS is maintained for each transaction.

The ODMG Object Model supports traditional pessimistic concurrency control as its
default policy, but does not preclude an ODMS from supporting a wider range of
concurrency control policies.

54 ODMG Object Model

2.9.1 Lock Types
The following locks are supported in the ODMG Object Model:

e read
e write
* upgrade

Read locks allow shared access to an object. Write locks indicate exclusive access to
an object. Readers of a particular object do not conflict with other readers, but writers
conflict with both readers and writers. Upgrade locks are used to prevent a form of
deadlock that occurs when two processes both obtain read locks on an object and then
attempt to obtain write locks on that same object. Upgrade locks are compatible with
read locks, but conflict with upgrade and write locks. Deadlock is avoided by initially
obtaining upgrade locks, instead of read locks, for all objects that intend to be modi-
fied. This avoids any potential conflicts when a write lock is later obtained to modify
the object.

These locks follow the same semantics as those defined in the OMG Concurrency
Control Service.

2.9.2 Implicit and Explicit Locking

The ODMG Object Model supports both implicit and explicit locking. Implicit locks
are locks acquired during the course of the traversal of an object graph. For example,
read locks are obtained each time an object is accessed and write locks are obtained
each time an object is modified. In the case of implicit locks, no specific operation is
executed in order to obtain a lock on an object. However, explicit locks are acquired
by expressly requesting a specific lock on a particular object. These locks are obtained
using the lock and try_lock operations defined in the Object interface. While read and
write locks can be obtained implicitly or explicitly, upgrade locks can only be obtained
explicitly via the lock and try_lock operations.

2.9.3 Lock Duration

By default, all locks (read, write, and upgrade) are held until the transaction is either

committed or aborted. This type of lock retention is consistent with the SQL-92 defi-
nition of transaction isolation level 3. This isolation level prevents dirty reads, nonre-
peatable reads, and phantoms.

2.10 Transaction Model

Programs that use persistent objects are organized into transactions. Transaction
management is an important ODMS functionality, fundamental to data integrity,
shareability, and recovery. Any access, creation, modification, and deletion of persis-
tent objects must be done within the scope of a transaction.

2.10 Transaction Model 55

A transaction is a unit of logic for which an ODMS guarantees atomicity, consistency,
isolation, and durability. Atomicity means that the transaction either finishes or has no
effect at all. Consistency means that a transaction takes the ODMS from one internally
consistent state to another internally consistent state. There may be times during the
transaction when the ODMS is inconsistent. However, isolation guarantees that no
other user of the ODMS sees changes made by a transaction until that transaction
commits. Concurrent users always see an internally consistent ODMS. Durability
means that the effects of committed transactions are preserved, even if there should be
failures of storage media, loss of memory, or system crashes. Once a transaction has
committed, the ODMS guarantees that changes made by that transaction are never lost.
When a transaction commits, all of the changes made by that transaction are perma-
nently installed in the persistent storage and made visible to other users of the ODMS.
When a transaction aborts, none of the changes made by it are installed in the persistent
storage, including any changes made prior to the time of abort. The execution of
concurrent transactions must yield results that are indistinguishable from results that
would have been obtained if the transactions had been executed serially. This property
is sometimes called serializability.

2.10.1 Distributed Transactions

Distributed transactions are transactions that span multiple processes and/or that span
more than one database, as described in ISO XA and the OMG Object Transaction
Service. The ODMG does not define an interface for distributed transactions because
this is already defined in the ISO XA standard and because it is not visible to the
programmers but used only by transaction monitors.Vendors are not required to
support distributed transactions, but if they do, their implementations must be
XA-compliant.

2.10.2 Transactions and Processes

The ODMG Object Model assumes a linear sequence of transactions executing within
a thread of control; that is, there is exactly one current transaction for a thread, and that
transaction is implicit in that thread's operations. If an ODMG language binding
supports multiple threads in one address space, then transaction isolation must be
provided between the threads. Of course, transaction isolation is also provided
between threads in different address spaces or threads running on different machines.

A transaction runs against a single logical ODMS. Note that a single logical ODMS
may be implemented as one or more physical persistent stores, possibly distributed on
a network. The transaction model neither requires nor precludes support for transac-
tions that span multiple threads, multiple address spaces, or more than one logical
ODMS.

56 ODMG Object Model

In the current Object Model, transient objects in an address space are not subject to
transaction semantics. This means that aborting a transaction does not restore the state
of modified transient objects.

2.10.3 Transaction Operations

There are two types that are defined to support transaction activity within an ODMS:
TransactionFactory and Transaction.

The TransactionFactory type is used to create transactions. The following operations
are defined in the TransactionFactory interface:

interface TransactionFactory {
Transaction new();
Transaction current();
¥
The new operation creates Transaction objects. The current operation returns the Trans-
action that is associated with the current thread of control. If there is no such associa-
tion, the current operation returns nil.

Once a Transaction object is created, it is manipulated using the Transaction interface.
The following operations are defined in the Transaction interface:

interface Transaction {

void begin() raises(TransactionInProgress,
DatabaseClosed);

void commit() raises(TransactionNotInProgress);

void abort() raises(TransactionNotinProgress);

void checkpoint() raises(TransactionNotInProgress);

void join() raises(TransactionNotInProgress);

void leave() raises(TransactionNotinProgress);

boolean isOpen();

k
After a Transaction object is created, it is initially closed. An explicit begin operation
is required to open a transaction. If a transaction is already open, additional begin oper-
ations raise the TransactionInProgress exception.

The commit operation causes all persistent objects created or modified during a trans-
action to be written to the ODMS and to become accessible to other Transaction objects
running against that ODMS. All locks held by the Transaction object are released.
Finally, it also causes the Transaction object to complete and become closed. The
TransactionNotInProgress exception is raised if a commit operation is executed on a
closed Transaction object.

2.10 Transaction Model 57

The abort operation causes the Transaction object to complete and become closed. The
ODMS is returned to the state it was in prior to the beginning of the transaction. All
locks held by the Transaction object are released. The TransactionNotinProgress
exception is raised if an abort operation is executed on a closed Transaction object.

A checkpoint operation is equivalent to a commit operation followed by a begin oper-
ation, except that locks held by the Transaction object are not released. Therefore, it
causes all modified objects to be committed to the ODMS, and it retains all locks held
by the Transaction object. The Transaction object remains open. The TransactionNotin-
Progress exception is raised if a checkpoint operation is executed on a closed Transac-
tion object.

ODMS operations are always executed in the context of a transaction. Therefore, to
execute any operations on persistent objects, an active Transaction object must be asso-
ciated with the current thread. The join operation associates the current thread with a
Transaction object. If the Transaction object is open, persistent object operations may
be executed; otherwise a TransactionNotinProgress exception is raised.

If an implementation allows multiple active Transaction objects to exist, the join and
leave operations allow a thread to alternate between them. To associate the current
thread with another Transaction object, simply execute a join on the new Transaction
object. If necessary, a leave operation is automatically executed to disassociate the
current thread from its current Transaction object. Moving from one Transaction object
to another does not commit or abort a Transaction object. When the current thread has
no current Transaction object, the leave operation is ignored.

After a Transaction object is completed, to continue executing operations on persistent
objects, either another open Transaction object must be associated with the current
thread or a begin operation must be applied to the current Transaction object to make
it open again.

Multiple threads of control in one address space can share the same transaction through
multiple join operations on the same Transaction object. In this case, no locking is
provided between these threads; concurrency control must be provided by the user.
The transaction completes when any one of the threads executes a commit or abort
operation against the Transaction object.

In order to begin a transaction, a Database object must be opened. During the
processing of a transaction, any operation executed on a Database object is bound to
that transaction. A Database object may be bound to any number of transactions. All
Database objects, bound to transactions in progress, must remain open until those
transactions have completed via either a commit or a rollback. If a close operation is
called on the Database object prior to the completion of all transactions, the Transac-
tioninProgress exception is raised and the Database object remains open.

58 ODMG Object Model

2.11 Database Operations

An ODMS may manage one or more logical ODMSs, each of which may be stored in
one or more physical persistent stores. Each logical ODMS is an instance of the type
Database, which is supplied by the ODMS. Instances of type Database are created
using the DatabaseFactory interface:

interface DatabaseFactory {
Database new();
h
Once a Database object is created by using the new operation, it is manipulated using
the Database interface. The following operations are defined in the Database
interface:

interface Database {
exception DatabaseOpen(};
exception DatabaseNotFound(};
exception ObjectNameNotUniquef};
exception ObjectNameNotFound(};
void open(in string odms_name)
raises(DatabaseNotFound,
DatabaseOpen);
void close() raises(DatabaseClosed,
TransactionInProgress);
void bind(in Object an_object, in string name)
raises(DatabaseClosed,
ObjectNameNotUnique,
TransactionNotInProgress);
Object unbind(in string name)
raises(DatabaseClosed,
ObjectNameNotFound,
TransactionNotinProgress);
Object lookup(in string object_name)
raises(DatabaseClosed,
ObjectNameNotFound,
TransactionNotinProgress);
ODLMetaObjects::Module schema()
raises(DatabaseClosed,
TransactionNotInProgress);
J2
The open operation must be invoked, with an ODMS name as its argument, before any
access can be made to the persistent objects in the ODMS. The Object Model requires

2.11 Database Operations 59

only a single ODMS to be open at a time. Implementations may extend this capability,
including transactions that span multiple ODMSs. The close operation must be
invoked when a program has completed all access to the ODMS. When the ODMS
closes, it performs necessary cleanup operations, and if a transaction is still in progress,
raises the TransactionInProgress exception. Except for the open and close operations,
all other Database operations must be executed within the scope of a Transaction. If
not, a TransactionNotinProgress exception will be raised.

The lookup operation finds the identifier of the object with the name supplied as the
argument to the operation. This operation is defined on the Database type, because the
scope of object names is the ODMS. The names of objects in the ODMS, the names of
types in the ODMS schema, and the extents of types instantiated in the ODMS are
global. They become accessible to a program once it has opened the ODMS. Named
objects are convenient entry points to the ODMS. A name is bound to an object using
the bind operation. Named objects may be unnamed using the unbind operation.

The schema operation accesses the root meta object that defines the schema of the
ODMS. The schema of an ODMS is contained within a single Module meta object.
Meta objects contained within the schema may be located via navigation of the appro-
priate relationships or by using the resolve operation with a scoped name as the argu-
ment. A scoped name is defined by the syntax of ODL and uses double colon (::)
delimiters to specify a search path composed of meta object names that uniquely iden-
tify each meta object by its location within the schema. For example, using examples
defined in Chapter 3, the scoped name “Professor::name” resolves to the Attribute meta
object that represents the name of class Professor.

The Database type may also support operations designed for ODMS administration,
for example, create, delete, move, copy, reorganize, verify, backup, restore. These
kinds of operations are not specified here, as they are considered an implementation
consideration outside the scope of the Object Model.

