
Probabilistic Graph Model

Takenori Sato

March 29, 2009



Contents

1 Abstract 2

2 Background 3
2.1 Graph Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 REST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Probabilistic Graph Model 7

4 Latent Resource Link Discovery 9
4.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Important Factor Analysis and Probability Calculation . . . . 10

5 For The Best Possible Performance Through Latent Link
Discovery 12
5.1 Locality On Low Level I/O . . . . . . . . . . . . . . . . . . . . 13
5.2 Improved Data Structure . . . . . . . . . . . . . . . . . . . . . 13
5.3 Improved Client Caching . . . . . . . . . . . . . . . . . . . . . 13



List of Figures

2.1 Graph and DirectedGraph in UML . . . . . . . . . . . . . . . 4
2.2 Resource in UML . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Probabilistic Graph in UML . . . . . . . . . . . . . . . . . . . 8

4.1 Latent Resource Link Discovery in UML . . . . . . . . . . . . 10
4.2 LinkRecord in UML . . . . . . . . . . . . . . . . . . . . . . . 11



Chapter 1

Abstract

ODBMS has been proved to work quite well with Graph. The intrinsic
advantages of ODBMS to interact with an algorithm makes it possible.

While in Information Retrieval, many studies have been done to improve
search engines. From the domain modeling point of view, they look quite
impressive especially because they find latent similarities between documents.

In this paper, Probabilistic Graph Model is introduced, in which edges
are represented in probabilities, not 1 or 0, but between 0 and 1. And
then, its possible application is shown, which models latent relationships of
Resources under REST(Representational State Transfer) concept in WWW
with an extended model by Composite design pattern. At last, through dis-
covery of latent links between resources, the way to achieve the best possible
optimizations are shown.

This is made for Common Persistent Model Patterns for Perfor-
mance and/or Scalability Optimization by ODBMS.ORG in a couple
of days. Actually written in a day. There’re many to be studied further, but
many points are shown from a new point of view.

I hope this would help you to inspire.



Chapter 2

Background

2.1 Graph Basics

Graph denoted by G(V,E) consists of a set V of vertices and a set E of edges.
Each edge is a set of two vertices from V.

V = {v1, ..., vm}
E = {e1, ..., en}
ek = {vi, vj}
ek ∈ E, vi, vj ∈ V

If {vi, vj} 6= {vj, vi}, G is a directed graph. In UML, it is represented as
shown in Figure 2.1.

For ODBMS, no cyclic directed Graph is highly recommended. This is
not often mentioned, but very important practical rule. Suppose you make
a query denoted as q, then retrieve a sub set of G denoted as Gq. After n
queries, you have a subset of G denoted as G(n)

G(n) = Gq1 ∪ ... ∪Gqn

On G(n), how do you define unused subset G
′
? In some advanced

environment like Java, how does GC determin such a subset? If G is not no
cyclic directed Graph, that is likely a difficult question. Then, you might



2.1 Graph Basics 4

Figure 2.1: Graph and DirectedGraph in UML



2.2 REST 5

end up with loading entire graph G on memory.

Given a query q, a probability if an edge ek of a vertex vi is retrieved or
not is denoted as p(ek|vi, q) ∈ (0, 1). It is 1 if vj matches q, 0 otherwise. A
graph that is retrieved by query q is Gq(Vq, Eq).

Vq = {v1, ..., vx}
Eq = {e1, ..., ey}

p(ek|vi, q) = 1, k ∈ (1...y), i ∈ (1...x)

In other words, on a path, which is made by two vertices picked up from
Vq, from vf to vt, all the probabilities of vertices involved are 1.

As mentioned above, both in terms of query and memory management,
non-cyclic directed graph is highly recommended. And a graph retrieved
by query q is a sub set of G, which can be represented with vertices of the
probability 1. This means that runtime behaviors are constrained by its
static model. In some problem domains emerged recently, edges between
vertices can not be formed statically in boolean manner, but dynamically in
probability. It’ll be introduced later in this paper.

2.2 REST

REST is an abbreviation of Representational State Transfer. According to
Wikipedia, it is defined as ”a style of software architecture for distributed
hypermedia systems such as the World Wide Web”. And systems that follow
REST is called RESTful. As XML web services has been turned out to be
quite complex, RESTful web service has become major with the successful
data structure calle JSON.

The central principle of REST is Resource(s), each of which can be ac-
cessed by its unique identifer as one of possible Representation(s). On World
Wide Web, a resource is accessed by its URI by HTTP. URI is models as
whole-part relationship, with the successful design pattern Composite, and
Strategy for available representations as shown in Figure 2.2.



2.2 REST 6

Figure 2.2: Resource in UML



Chapter 3

Probabilistic Graph Model

A graph Ω(V, E) is defined as Probabilistic Graph if p(ek|vi, q) ∈ {0...1}.
This definition is an extention of conventional Graph G(V,E), which is the
special case when p(ek|vi, q) ∈ {0, 1}. If such an edge, ek = {vi, vj} ∈ E,
exists that is p(ek|vi, q)! = p(ek|vj, q), it is considered directed.

There’s no such an notation that shows probabilities in UML. So I used
dot line to mean such a might have replationship as shown in Figure 3.1.



8

Figure 3.1: Probabilistic Graph in UML



Chapter 4

Latent Resource Link Discovery

4.1 Data Model

Latent Resource Link Discovery is a model to find latent links between Re-
sources as shown in Figure 4.1. The main concern for Information Retrieval
has been on a single retrieval task. But in the real world, Information
Retrieval is considered as a collection of sequencial tasks. This model is to
picture such sequences as Probability Graph.

With directed whole-part relationship, Composite is considered as
directed Graph. By extending relationships with probabilities, Latent
Resource Link Discovery is modeled as no-cyclic directed Probabilistic
Graph.

Aspect is ”a part of a program that cross-cuts its core concerns, therefore
violating its separation of concerns” according to Wikipedia. In ODBMS,
such core concerns are modeled as data structure defined by a set of Class,
which consists of a set of Member. Aspect is weaved with a set of Members.
A Resource has one or more Aspect(s).

LatentLink is a utility that holds one pair of possibility value and
Resource.

A Link between Resources is implemented with an ordered array of
number storing probability values and its corresponding ordered array of
AbstractResource objects. In ODBMS, it worths to pay some attentions for
their differences. In general, an array belongs to the class that defines the
array as its member. While a list is considered independent. In the case



4.2 Important Factor Analysis and Probability Calculation 10

Figure 4.1: Latent Resource Link Discovery in UML

of Link, only a sub set of linked Resources, whose probabilities are over a
certain threshold, are accessed. So list seems better, especially when its
size is quite large. But I have an assumption that its number is limited to
reasonable size that makes sense to load entirely. It is a duty of algorithm to
pick up k important factors. Another reason is that Latent Resource Link
Discovery is not cyclic, where sharing objects are not likely common.

4.2 Important Factor Analysis and Probabil-

ity Calculation

I suppose an important factor analysis is done as shown below. The relation
between Y and X may be linear or not.

Y = ΛX

Y is a matrix, whose jth column is a vector representing a single sample
measured during timespan Sj. And Yij is access count of ith Resource during
Sj.

X is a matrix, whose jth column is a vector representing jth Resource.
And Xij is access count prior to ith Resource from jth Resource.



4.2 Important Factor Analysis and Probability Calculation 11

Figure 4.2: LinkRecord in UML

Λ is a matrix, whose jth column is a vector representing a single sample
measured during time span Sj. And Λij is access probability to ith Resource
during time span Sj.

An algorithm will find such Λ to discover Latent Links between Re-
sources. To form such an analysis, access history is stored as LinkRecord
shown in Figure 4.2.



Chapter 5

For The Best Possible
Performance Through Latent
Link Discovery

Once you find latent links between resources, you are ready to get the best
possible performance.

To evaluate performance, a model is required. Here, consider Risk
Minimization Model. A risk is cost like disk access, file system access, query,
networking, weave into aspect. The purpose of the model is to minimize
sum of such costs for a certain time span.

• Locality On Low Level I/O

– disk access cost

• Improved Data Structure

– file system access cost

– query cost

– weave cost

• Improved Client Caching

– networking

Related Objects mean those that belong to Resources, which are tied with
high probability.



5.1 Locality On Low Level I/O 13

5.1 Locality On Low Level I/O

Disk seeks matter. By storing Related Objects contiguously on disk, the
most expensive disk access cost is minimized. But changing physical
locations are even more expensive. So it is not realistic to change often.

Another way is to read Related Objects all together. In Linux 2.6, even
if they are on different blocks, they could be cached in a single cache page if
they are accessed at the same time. So, depending on platform, it leads to
fewer disk access by improved file system cache hits.

5.2 Improved Data Structure

From latent links through related aspects, you may find Related Objects
are defined separately. By grouping them into the fewest possible Classes,
overall database cache hits are improved.

Or you may find some of Related Objects belong to large objects. In
this case, by putting apart such classes, only necessary objects are read. It
leads to better database cache hits.

5.3 Improved Client Caching

The number of network round trips is critical. By fetching Related Objects
at once, it can be minimized.


