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the tree. More recently, SURPASS [47] makes use of linear discriminants during the recursive
partitioning process. The summary statistics (like AVC tables) are obtained incrementally. Rather
than using summary statistics, [74] samples the training data, with confidence levels determined by
PAC learning theory.

4.4.3 Parallel Decision Tree Construction

Several studies have sought to further speed up the decision tree construction using parallel
machines. One of the first such studies is by Zaki et al. [88], who develop a shared memory paral-
lelization of the SPRINT algorithm on disk-resident datasets. In parallelizing SPRINT, each attribute
list is assigned to a separate processor. Also, Narlikar has used a fine-grained threaded library for
parallelizing a decision tree algorithm [57], but the work is limited to memory-resident datasets. A
shared memory parallelization has been proposed for the RF-read algorithm [38].

The SPIES approach has been parallelized [39] using a middleware system, FREERIDE
(Framework for Rapid Implementation of Datamining Engines) [36, 37], which supports both dis-
tributed and shared memory parallelization on disk-resident datasets. FREERIDE was developed
in early 2000 and can be considered an early prototype of the popular MapReduce/Hadoop sys-
tem [16]. It is based on the observation that a number of popular data mining algorithms share a
relatively similar structure. B¥ir common processing structure is essentially that of generalized re-
ductions. During each phase of@he algorithm, the computation involves reading the data instances
in an arbitrary order, processing data instance (similar to Map in MapReduce), and updating
elements of a Reduction object usi gz»&sociative and commutative operators (similar to Reduce in
MapReduce). (04

In a distributed memory setting, such %&hms can be parallelized by dividing the data items
among the processors and replicating the re )ig)n object. Each node can process the data items
it owns to perform a local reduction. After loca@duction on all processors, a global reduction is
performed. In a shared memory setting, parallelization | pan be done by assigning different data items
to different threads. The main challenge in maintainin } correctness is avoiding race conditions
when different threads may be trying to update the same el&@ent of the reduction object. FREERIDE
has provided a number of techniques for avoiding such race itions, particularly focusing on the
memory hierarchy impact of the use of locking. However, if @easize of the reduction object is
relatively small, race conditions can be avoided by simply replicatin&the reduction object.

The key observation in parallelizing the SPIES-based algorithm is%t.construction of each type
of AVC group, i.e., small, concise, and partial, essentially involves a red&ion operation. Each data
item is read, and the class histograms for appropriate AVC sets are updated. The order in which
the data items are read and processed does not impact the final value of AVC groups. Moreover, if
separate copies of the AVC groups are initialized and updated by processing different portions of
the data set, a final copy can be created by simply adding the corresponding values from the class
histograms. Therefore, this algorithm can be easily parallelized using the FREERIDE middleware
system.

More recently, a general strategy was proposed in [11] to transform centralized algorithms into
algorithms for learning from distributed data. Decision tree induction is demonstrated as an example,
and the resulting decision tree learned from distributed data sets is identical to that obtained in the
centralized setting. In [4] a distributed hierarchical decision tree algorithm is proposed for a group of
computers, each having its own local data set. Similarly, this distributed algorithm induces the same
decision tree that would come from a sequential algorithm with full data on each computer. Two
univariate decision tree algorithms, C4.5 and univariate linear discriminant tree, are parallelized in
[87] in three ways: feature-based, node-based, and data-based. Fisher’s linear discriminant function
is the basis for a method to generate a multivariate decision tree from distributed data [59]. In
[61] MapReduce is employed for massively parallel learning of tree ensembles. Ye et al. [86] take
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FIGURE 4.5: Illustration of streaming data.
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on the challenging task of combining bootstrapping, which implies sequential improvement, with
distributed processing.

4.5 Incremental Decision Tree Induction

Non-incremental decision tree learning methods assume that the training items can be accom-
modated simultaneously in the main memory or disk. This assumption grieviously limits the power
of decision trees when dealing with the following situations: 1) training data sets are too large to
fit into the main memory or disk, 2) the entire training data sets are not available at the time the
tree is learned, and 3) the underlying distribution of training data sets is changed. Therefore, incre-
mental decision tree learning methods have received much attention from the very beginning [68].
In this section, we examine the techniques for learning decision tree incrementally, especially in a
streaming data setting.

Streaming data, represented by an endless sequence of data items, often arrive at high rates.
Unlike traditional data available for batch (or off-line) prcessing, the labeled and unlabeled items
are mixed together in the stream as shown in Figure 4.5.

In Figure 4.5, the shaded blocks are labeled records. We can see that labeled items can arrive
unexpectedly. Therefore, this situation proposes new/requirements for learning algorithms from
streaming data, such as iterative, single pass, any-time learning [23].

To learn decision trees from streaming data, there are-two main strategies: a greedy approach
[14,68,78-80] and a statistical approach [19,33]. In this section, we introduce both approaches,
which are illustrated by two famous families of decision trees, respectively: /D3 and VFDT.

4.5.1 1ID3 Family

Incremental induction has been discussed almost from the start. Schlimmer [68] considers in-
cremental concept induction in general, and develops an incremental algorithm named ID4 with a
modification of Quinlan’s top-down ID3 as a case study. The basic idea of ID4 is listed in Algorithm
4.3.

In Algorithm 4.3, A, stands for all the attributes contained in tree node v, and A} for the attribute
with the lowest E-score. Meanwhile count n;j,(v) records the number of records observed by node v
having value x;; for attribute A; and being in class y. In [68], the authors only consider positive and
negative classes. That means |Y| = 2. v, stands for the immediate child of v containing item r.

Here, the E-score is the result of computing Quinlan’s expected information function E of an
attribute at any node. Specificially, at node v,

* n?: # positive records;
e n": # negative records;
* n;;: # positive records with value x;; for attribute A;;

* nl: # negative records with value x;; for attribute A;;
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Algorithm 4.3 ID4(v, r)
Input: v: current decision tree node;

Input: r: data record r = (x,y);
1: foreach A; € A,, where A, C A do

2 Increment count n;j,(v) of class y for A;;
3: end for
4: if all items observed by v are from class y then
5: return;
6: else
7: if v is a leaf node then
8: Change v to be an internal node;
9: Update A} with lowest E-score;
10: else if A} does not have the lowest E-score then
11 Remove all children Child(v) of v;
12: Update A};
13: end if
14: if Child(v) = 0 then
15: Generate the set Child(v) for all values of attribute A};
16: end if
17: ID4(v,,r);
18: end if
Then
Al P +n't
E(A;) = Z Wl(nfj,n;’j), (4.20)
j=1
with
0 fx=00ry=0
1(x7y) = { x x y y .
—5lgss — logm otherwise.

In Algorithm 4.3, we can see that whenever an erroneous splittingattribute is found at v (Line
10), ID4 simply removes all the subtrees rooted at v’s immediate children'(Line 11), and computes
the correct splitting attribute A} (Line 12).

Clearly ID4 is not efficient because it removes the entire subtree when a new A} is found, and this
situation could render certain concepts unlearnable by ID4, which could be induced by ID3. Utgoff
introduced two improved algorithms: IDS5 [77] and IDSR [78]. In particular, IDSR guarantees it will
produce the same decision tree that ID3 would have if presented with the same training items.

In Algorithm 4.4, when a splitting test is needed at node v, an arbitrary attribute A, € A, is
chosen; further, according to counts n;j,(v) the optimal splitting attribute A} is calculated based on
E-score. If A} # A,, the splitting attribute A} is pulled up from all its subtrees (Line 10) to v, and all
its subtrees are recursively updated similarly (Line 11 and 13).

The fundamental difference between ID4 (Algorithm 4.3) and ID5R (Algorithm 4.4) is that
when ID5R finds a wrong subtree, it restructures the subtree (Line 11 and 13) instead of discarding
it and replacing it with a leaf node for the current splitting attribute. The restructuring process in
Algorithm 4.4 is called the pull-up procedure. The general pull-up procedure is as follows, and
illustrated in Figure 4.6. In Figure 4.6, left branches satisfy the splitting tests, and right ones do not.

1. if attribute A} is already at the root, then stop;

2. otherwise,
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Algorithm 4.4 IDSR(v, r)
Input: v: the current decision tree node;
Input: r: the data record r = (x,y);
1: If v = null, make v a leaf node; return;
If v is a leaf, and all items observed by v are from class y; return;
if v is a leaf node then
Split v by choosing an arbitrary attribute;
end if
for A; € A,, where A, C A do
Increment count n;j,(v) of class y for A;;
end for
if A} does not have the lowest E-score then
Update Aj, and restructure v;
Recursively reestablish v, € Child(v) except the branch v, for r;
end if
: Recursively update subtree v, along the branches with the value occuring in x;

R A A T ol
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FIGURE 4.6: Subtree restructuring.
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(a) Recursively pull the attribute A} to the root of eaclvimmediate subtree of v. Convert any
leaves to internal nodes as necessary, choosing A} as_splitting attribute.

(b) Transpose the subtree rooted at v, resulting in a new subtree with A}, at the root, and the
old root attribute A, at the root of each immediate subtree of'v.

There are several other works that fall into the ID3 family. A variation for multivariate splits
appears in [81], and an improvement of this work appears in [79], which is able to handle numerical
attributes. Having achieved an arguably efficient technique for incrementally restructuring a tree,
Utgoff applies this technique to develop Direct Metric Tree Induction (DMTI). DMTT leverages fast
tree restructuring to fashion an algorithm that can explore more options than traditional greedy top-
down induction [80]. Kalles [42] speeds up ID5R by estimating the minimum number of training
items for a new attribute to be selected as the splitting attribute.

4.5.2 VFDT Family

In the Big Data era, applications that generate vast streams of data are ever-present. Large retail
chain stores like Walmart produce millions of transaction records every day or even every hour, giant
telecommunication companies connect millions of calls and text messages in the world, and large
banks receive millions of ATM requests throughout the world. These applications need machine
learning algorithms that can learn from extremely large (probably infinite) data sets, but spend only
a small time with each record. The VFDT learning system was proposed by Domingos [19] to
handle this very situation.
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VEDT (Very Fast Decision Tree learner) is based on the Hoeffding tree, a decision tree learning
method. The intuition of the Hoeffding tree is that to find the best splitting attribute it is sufficient
to consider only a small portion of the training items available at a node. To acheive this goal, the
Hoeffding bound is utilized. Basically, given a real-valued random variable r having range R, if we
have observed n values for this random variable, and the sample mean is 7, then the Hoeffding bound
states that, with probability 1 — §, the true mean of r is at least 7 — €, where

€=/ M 4.21)
2n

Based on the above analysis, if at one node we find that F(A;) — F(A;) > €, where F is the
splitting criterion, and A; and A are the two attributes with the best and second best F' respectively,
then A; is the correct choice with probability 1 — 3. Using this novel observation, the Hoeffding tree
algorithm is developed (Algorithm 4.5).

Algorithm 4.5 HoeffdingTree(S, A, F, 0)
Input: S: the streaming data;
Input: A: the set of attributes;
Input: F: the split function;
Input: 3: 1 — & is the probability of choosing the correct attribute to split;
Output: 7': decision tree
1: Let T be a tree with a single leafvy;
2: Let A = A;
3: Set count n;j,(v1) = 0 for each y € Y, €ach value x;; of each attribute A; € A
4: for each training record (x,y) in S do
5 Leaf v = classify((x,y),T);
6 For each x;; € x: Increment count n;j,(v);
7: if n;j,(v) does not satisfy any stop conditions then
3
9

Ay = F(nijy(v),8);
Replace v by an internal node that splits on A};

10: for each child v,, of v do
11 Let A, = A, — {A}};
12: Initialize n;jy(vin);

13: end for

14: end if

15: end for

16: return T

In Algorithm 4.5, the n;j, counts are sufficient to calculate F. Initially decision tree T only
contains a leaf node vi(Line 1), and v; is labeled by predicting the most frequent class. For each
item (x,y), it is first classified into a leaf node v through 7' (Line 5). If the items in v are from more
than one class, then v is split according to the Hoeffding bound (Line 8). The key property of the
Hoeffding tree is that under realistic assumptions (see [19] for details), it is possible to guarantee
that the generated tree is asymptotically close to the one produced by a batch learner.

When dealing with streaming data, one practical problem that needs considerable attention is
concept drift, which does not satisfy the assumption of VFDT: that the sequential data is a random
sample drawn from a stationary distribution. For example, the behavior of customers of online
shopping may change from weekdays to weekends, from season to season. CVFDT [33] has been
developed to deal with concept drift.

CVFDT utilizes two strategies: a sliding window W of training items, and alternate subtrees
ALT (v) for each internal node v. The decision tree records the statistics for the |W| most recent
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unique training items. More specifically, instead of learning a new model from scratch when a
new training item (x,y) comes, CVFDT increments the sufficient statistics n;;, at corresponding
nodes for the new item and decrements the counts for the oldest records (x,,y,) in the window.
Periodically, CVFDT reevaluates the classification quality and replaces a subtree with one of the
alternate subtrees if needed.

Algorithm 4.6 CVFDT(S, A, F.5, w, f)
Input: S: the streaming data;
Input: A: the set of attributes;
Input: F: the split function;
Input: J: 1 — & is the probability of choosing the correct attribute to split;
Input: w: the size of window;
Input: f: # training records between checks for drift;
Output: T: decision tree;
let T be a tree with a single leaf vy;
let ALT (v) be an initially empty set of alternate trees for v;;
let A1 =A;
Set count n;j,(v1) = 0 for each y € Y and each value x;; for A; € A;
Set record window W =03
for each training record (x;») in S do
L= classify({x,y),T), where L contains all nodes that (x,y) passes through using 7" and all
trees in ALT;
W=wu{{xy}
9: if [W| > w then
10: let (x,,y,) be the oldest element of W ;
11: ForgetExample(T,ALT, (x,,y,));
12: let W =W\ {{x5,Y0)};
13: end if
14: CVEDTGrow (T, L, (x,y),d);
15: if there have been f examples since the last checking-of alternate trees
16: CheckSplitValidity(7,9);
17: end for
18: return T

A o

®

An outline of CVFDT is shown in Algorithm 4.6. When a new record (x,y) is received, we
classify it according to the current tree. We record in a structure L every node in the tree T and in
the alternate subtrees ALT that are encountered by (x,y) (Line 7). Lines 8 to 14 keep the sliding
window up to date. If the tree’s number of data items has now exceeded the maximum window
size (Line 9), we remove the oldest data item from the statistics (Line 11) and from W (Line 12).
ForgetExample traverses the decision tree and decrements the corresponding counts n;;, for (x,,y,)
in any node of T or ALT. We then add (x,y) to the tree, increasing n;;y statistics according to L (Line
14). Finally, once every f items, we invoke Procedure CheckSplitValidity, which scans T and ALT
looking for better splitting attributes for each internal node. It revises T and ALT as necessary.

Of course, more recent works can be found following this family. Both VFDT and CVFDT
only consider discrete attributes; the VFDTc [26] system extends VFDT in two major directions:
1) VEDTc is equipped with the ability to deal with numerical attributes; and 2) a naive Bayesian
classifier is utilized in each leaf. Jin [40] presents a numerical interval pruning (NIP) approach to
efficiently handle numerical attributes, and speeds up the algorithm by reducing the sample size.
Further, Bifet [6] proposes a more efficient decision tree learning method than [26] by replacing
naive Bayes with perceptron classifiers, while maintaining competitive accuracy. Hashemi [32] de-
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velops a flexible decision tree (FlexDT) based on fuzzy logic to deal with noise and missing values
in streaming data. Liang [48] builds a decision tree for uncertain streaming data.

Notice that there are some general works on handling concept drifting for streaming data.
Gama [27,28] detects drifts by tracing the classification errors for the training items based on PAC
framework.

4.5.3 Ensemble Method for Streaming Data

An ensemble classifier is a collection of several base classifiers combined together for greater
prediction accuracy. There are two well-known ensemble learning approaches: Bagging and Boost-
ing.

Online bagging and boosting algorithms are introduced in [60]. They rely on the following
observation: The probability for each base model to contain each of the original training items k
times follows the binomial distribution. As the number of training items goes to infinity, k follows
the Possion(1) distribution, and this assumption is suitable for streaming data.

In [73], Street et al. propose an ensemble method to read training items sequentially as blocks.
When a new training block D comes, a new classifier C; is learned, and C; will be evaluated by the
next training block. If the ensemble committee E is not full, C; is inserted into E; otherwise, C;
could replace some member(classifier C; in E if the quality of C; is better than that of C;. However,
both [73] and [60] fail to explicitly take into consideration the concept drift problem.

Based on Tumer’s work [76]; Wang et al. [84] prove that ensemble classifier E produces a
smaller error than a single classifier’G<€ E, if all the classifiers in E have weights based on their
expected classification accuracy on the test data. Accordingly they propose a new ensemble classifi-
cation method that handles concept drift as“follows: When a new chunk D of training items arrives,
not only is a new classifier C trained, but alsothe weights of the previously trained classifiers are
recomputed.

They propose the following training method for classifiers on streaming chunks of data, shown
in Algorithm 4.7.

Algorithm 4.7 EnsembleTraining(S, K, C)
Input: S: anew chunk of data;
Input: K: the number of classifiers;
Input: C: the set of previously trained classifiers;

1: Train a new classifier C' based on S;
Compute the weight w forC’;
for each C; € C do

Recompute the weight w; for C; based on S;

end for
C « top K weighted classifiers from CU{C'};

AN A

In Algorithm 4.7, we can see that when a new chunk § arrives, not only a new classifier c is
trained, but also the weights of the previous trained classifiers are recomputed in this way to handle
the concept drifting.

Kolter et al. [45] propose another ensemble classifier to detect concept drift in streaming data.
Similar to [84], their method dynamically adjusts the weight of each base classifier according to its
accuracy. In contrast, their method has a weight parameter threshold to remove bad classifiers and
trains a new classifier for the new item if the existing ensemble classifier fails to identity the correct
class.

Fan [21] notices that the previous works did not answer the following questions: When would
the old data help detect concept drift and which old data would help? To answer these questions, the
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author develops a method to sift the old data and proposes a simple cross-validation decision tree
ensemble method.

Gama [29] extends the Hoeffding-based Ultra Fast Forest of Trees (UFFT) [25] system to han-
dle concept drifting in streaming data. In a similar vein, Abulsalam [1] extends the random forests
ensemble method to run in amortized O(1) time, handles concept drift, and judges whether a suffi-
cient quantity of labeled data has been received to make reasonable predictions. This algorithm also
handles multiple class values. Bifet [7] provides a new experimental framework for detecting con-
cept drift and two new variants of bagging methods: ADWIN Bagging and Adaptive-Size Hoeffding
Tree (ASHT). In [5], Bifet et al. combine Hoeffding trees using stacking to classify streaming data,
in which each Hoeffding tree is built using a subset of item attributes, and ADWIN is utilized both
for the perceptron meta-classifier for resetting learning rate and for the ensemble members to detect
concept drifting.

4.6 Summary

Compared to other classification methods [46], the following stand out as advantages of decision
trees:

¢ Easy to interpret. A small decision tree can be visualized, used, and understood by a layper-
son.

* Handling both numerical and categorical attributes. Classification methods that rely on
weights or distances (neural networks, k-nearest neighbor, and support vector machines) do
not directly handle categorical data.

* Fast. Training time is competitive with other classification methods.
* Tolerant of missing values and irrelevant attributes.
 Can learn incrementally.

The shortcomings tend to be less obvious and require a little moré‘explanation. The following
are some weaknesses of decision trees:

* Not well-suited for multivariate partitions. Support vector machines and neural networks are
particularly good at making discriminations based on a weighted sum of all the attributes.
However, this very feature makes them harder to interpret.

» Not sensitive to relative spacing of numerical values. Earlier, we cited decision trees’ ability
to work with either categorical or numerical data as an advantage. However, most split criteria
do not use the numerical values directly to measure a split’s goodness. Instead, they use the
values to sort the items, which produces an ordered sequence. The ordering then determines
the candidate splits; a set of n ordered items has n — 1 splits.

* Greedy approach may focus too strongly on the training data, leading to overfit.

* Sensitivity of induction time to data diversity. To determine the next split, decision tree in-
duction needs to compare every possible split. As the number of different attribute values
increases, so does the number of possible splits.
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Despite some shortcomings, the decision tree continues to be an attractive choice among classifi-
cation methods. Improvements continue to be made: more accurate and robust split criteria, ensem-
ble methods for even greater accuracy, incremental methods that handle streaming data and concept
drift, and scalability features to handle larger and distributed datasets. A simple concept that began
well before the invention of the computer, the decision tree remains a valuable tool in the machine
learning toolkit.
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