Skip to content

Big Data: Smart Meters — Interview with Markus Gerdes.

by Roberto V. Zicari on June 18, 2012

“For a large to medium sized German utility, which has about 240,000 conventional meters, quarter-hour meter readings would produce 960,000 sets of meter data to be processed and stored each hour once replaced by smart meters. And every hour another 960,000 sets of meter data have to be processed.” — Markus Gerdes.

80 percent of all households in Germany will have to be equipped with smart meters by 2020, according to a EU single market directive.
Why smart meters? A smart meter, as described by e.On, is “a digital device which can be read remotely and allows customers to check their own energy consumption at any time. This helps them to control their usage better and to identify concrete ways to save energy. Every customer can access their own consumption data online in graphic form displayed in quarter-hour intervals. There is also a great deal of additional information, such as energy saving tips. Similarly, measurements can be made using a digital display in the home in real time and the current usage viewed.” This means Big Data. How do we store, and use all these machine-generated data?
To better understand this, I have interviewed Dr. Markus Gerdes, Product Manager at BTC , a company specialized in the energy sector.

RVZ

Q1. What are the main business activities of BTC ?

Markus Gerdes: BTC provides various IT-services: besides the basics of system management, e.g. hosting services, security services or the new field of mobile security services, BTC primarily delivers IT- and process consulting and system integration services for different industries, especially for utilities.
This means, BTC plans and rolls IT-architectures out, integrates and customizes IT-applications and migrates data for ERP, CRM and more applications. BTC also delivers its IT-applications if desired: In particular, BTC’s Smart Metering solution BTC Advanced Meter Management (BTC AMM) is increasingly known in the smart meter market and has drawn customers` interest at this stage of the market, not only in Germany, but e.g. in Turkey and other European countries as well.

Q2. According to a EU single market directive and German Federal Government, 80 percent of all households in Germany will have to be equipped with smart meters by 2020, How many smart meters will have to be installed? What will the government do with all these data generated?

Markus Gerdes: Currently, 42 million electricity meters are installed in Germany. Thus, about 34 million meters need to be exchanged according to the EU directive in Germany until 2020. In order to achieve this aim, in 2011 the Germany EnWG (law on the energy industry) adds some new aspects: smart meters have to be installed where customers` electricity consumption is more than 6.000 kWh per year, at decentralized feed-in with more than 7 kW and in considerably refurbished or newly constructed buildings, if this is technically feasible.
In this context technical feasible means, that the installed smart meters are certified (as a precondition they have to use the protection profiles) and must be commercially available in the meter market. An amendment to the EnWG is due in September 2012 and it is generally expected that this threshold of 6000 kWh will be lowered. The government will actually not be in charge of the data collected by the Smart Meters. It is metering companies who have to provide the data to the distribution net operators and utility companies. The data is then used for billing and as an input to customer feedback systems for example and potentially grid analyses under the use of pseudonyms.

Q3. Smart Metering: Could you please give us some detail on what Smart Metering means in the Energy sector?

Markus Gerdes: Smart Metering means opportunities. The technology itself does no more or less than deliver data, foremost a timestamp plus a measured value, from a metering system via a communication network to an IT-system, where it is prepared and provided to other systems. If necessary this may even be done in real time. This data can be relevant to different market players in different resolutions and aggregations as a basis for other services.
Furthermore, smart meter offer new features like complex tariffs, load limitations etc. The data and the new features will lead to optimized processes with respect to quality, speed and costs. The type of processing will finally lead to new services, products and solutions – some of which we do not even know today. In combination with other technologies and information types the smart metering infrastructure will be the backbone of smart home applications and the so-called smart grid.
For instance, BTC develops scenarios to combine the BTC AMM with the control of virtual power plants or even with the BTC grid management and control application BTC PRINS. This means: smart markets become reality.

Q4. BTC AG has developed an advanced meter management system for the energy industry. What is it?

Markus Gerdes:The BTC AMM is an innovative software system, which allows meter service providers to manage, control and readout smart meters and provide these meter readings and other possibly relevant information, e.g. status information, information on meter corruption and manipulation to authorized market partners.
Also data and control signals for the smart meter can be provided by the system.
The BTC AMM is developed as a new solution BTC has been able to particularly focus on mass data management and smart meter mass process optimized workflows. In combination with a clear and easy to use frontend we bring our customers a high performance solution for their most important requirements.
In addition, our modular concept and the use of open standards makes our vendor-independent solution not only fit into utilities IT-architecture easily but makes it future-proof.

Q5. What kind of data management requirements do you have for this application? What kind of data is a smart meter producing and at what speed? How do you plan to store and process all the data generated by these smart meters?

Markus Gerdes: Let me address the issue of the data volume and frequency of data sent first. The BTC AMM is designed to collect the data of several millions of
smart meters. In a standard scenario each of the smart meters sends a load profile with a resolution of 15 minutes to the BTC AMM. This means that at least 96 data points have to be stored by the BTC AMM per day and meter. This implies both, a huge amount of data to be stored and a high frequency data traffic.
Hence, the data management system needs to be highly performant in both dimensions. In order to process time series BTC has developed a specific, highly efficient time series management which runs with different data base providers. This enables the BTC AMM to cope even with data sent in a higher frequency. For certain smart grid use cases the BTC AMM processes metering data sent from the meters on the scale of seconds.

Q6. The system you are developing is based on InterSystems Caché® database system. How do you use Cache`?

Markus Gerdes: BTC uses InterSystems Caché as Meter Data Management solution. This means the incoming data from the smart meters is saved into the database and the information provided e.g. to backend-systems via webservices or to other interfaces so that the data can be used for market partner communication or customer feedback systems. And all this means the BTC AMM has to handle thousands of read- and write-operations per second.

Q7. You said that one of the critical challenge you are facing is to “master up the mass data efficiency in communicating with smart meters and the storage and processing of measured time series” Can you please elaborate on this? What is the volume of the data sets involved?

Markus Gerdes: For a large to medium sized German utility, which has about 240,000 conventional meters, quarter-hour meter readings would produce 960,000
sets of meter data to be processed and stored each hour once replaced by smart meters. And every hour another 960,000 sets of meter data have to be processed.
In addition calculations, aggregations and plausibility checks are necessary. Moreover incoming tasks have to be processed and the relevant data has to be delivered to backend applications. This means that the underlying database as well as the AMM-processes may have to process the incoming data every 15 minutes while reading thousands of time series per minute simultaneously.

Q8. How did you test the performance of the underlying database system when handling data streams? What results did you obtain so far?

Markus Gerdes: We designed a load profile generator and used it to simulate the meter readings of more than 1 million smart meters. The tests included the
writing of quarter-hour meter readings. Actually the problem with this test was the speed of the generator to provide the data, not the speed of the AMM. In fact we are able to write more than 12.000 time-series per second. This is far enough to cope even with full meter rollouts.

Q9. What is the current status of this project? What are the lessons learned so far? And the plans ahead? Are there any similar systems implemented in Europe?

Markus Gerdes: At the moment we think that our BTC AMM- and database-performance is able to handle the upcoming mass data during the next years including a full smart meter rollout in Germany. Nevertheless, in terms of smart grid and smart home appliances and an increasing amount of real time event processings, both read and write, it is necessary to get a clear view of future technologies to speed up processing of mass data (e.g. in-memory).
In addition we still have to keep an eye on usability. Although we hope that smart metering in the end will lead to complete machine-to-machine-communication we always have to expect errors and disturbances from technology, communication or even the human factor. As event driven processes are time critical we still have to work on solutions for fast and efficient handling, analyses and processing of mass errors.
_________________

Dr. Markus Gerdes, Product Manager BTC AMM / BTC Smarter Metering Suite, BTC Business Technology Consulting AG.
Since 2009 Mr. Gerdes worked in several research, development and consulting projects in the area of smart metering. He was involved in research and consulting in the sectors Utilities, Industry and Public, regarding IT-architecture and solutions and IT-Security.
He is experienced in the development of energy management solutions.

From → Uncategorized

One Comment Leave one →
  1. Bob permalink

    “For a large to medium sized German utility, which has about 240,000 conventional meters, quarter-hour meter readings would produce 960,000 sets of meter data to be processed and stored each hour once replaced by smart meters. And every hour another 960,000 sets of meter data have to be processed.”

    If we have 240,000 smart meters getting readings every 15 min, we will have 960,000 sets of data per hour. Let’s say, a smart meter sends 3 values every 15 minutes. One for the time, one for the energy and/or power and one for the frequency, or anything related. Let’s assume every value needs 8 bytes (big enough) in order to be stored.

    In that case, the utility enterprise would have to analyse:
    960,000 * 10 * 10 bytes =~ 22 Megabytes of data per hour

    This is big data? Please explain.

Leave a Reply

Note: HTML is allowed. Your email address will not be published.

Subscribe to this comment feed via RSS