Skip to content

"Trends and Information on AI, Big Data, Data Science, New Data Management Technologies, and Innovation."

This is the Industry Watch blog. To see the complete
website with useful articles, downloads and industry information, please click here.

Jun 19 23

On Generative AI. Interview with Philippe Kahn

by Roberto V. Zicari

 AI will neither save nor doom the world. It’s people that will. “

Q1. OpenAI CEO Sam Altman says AI will reshape society, acknowledges risks: ‘A little bit scared of this’  (*) What is your take on this? 

Philippe: At Fullpower-AI, we build a domain-specific generative AI platform so that I may have an insider perspective.  The AI platforms we build are the world’s most rapidly developing technologies. They aren’t just generating text, images, videos, and sounds. They are creating a combination of excitement and anxiety among people and governments across the globe. It’s important to stay ahead of the curve. 

Here are some advantages of Generative AI

  1. Assistance and Automation: ChatGPT, Bard, and similar models can provide valuable assistance and automation in various tasks. They can answer questions, provide recommendations, assist with research, and even automate certain processes, saving time and effort.
  2. One-on-one personalization for learning, researching, and automating. 
  3. Creativity: Generative AI can create new and original content, including text, images, and music. It can develop ideas and solutions that some humans might have not considered. 
  4. Democratization of knowledge and content: Generative AI can make complex information and technologies more accessible to a broader audience. It can simplify and explain complex concepts more understandably, allowing people to engage with information that might otherwise be challenging to understand.

Here are some disadvantages of generative AI: 

  1. Bias and Misinformation: Generative AI models like ChatGPT can inadvertently reflect and amplify biases present in the training data. The model’s outputs may also contain similar biases or misinformation if the training data contains biased or inaccurate information. And, of course, there is a potential for a compounding effect. 
  2. Potential nonsense generation: Although AI models can generate coherent responses, they often need a true understanding of the content. They rely heavily on patterns, brute force data manipulation, and statistical correlations in the data rather than true comprehension, which can lead to incorrect or nonsensical answers with a potentially compounding effect. 
  3. Ethical Concerns: There are ethical concerns surrounding generative AI, particularly when it comes to deep fakes and the potential for malicious use. These models can be misused to create convincing fake content, significantly affecting opinion, attitude, policy, privacy, security, and trust. It’s the old perverse: “The bigger the lie, the more will believe it.” 
  4. Overreliance and Dependency: As generative AI becomes more prevalent, there is a risk of overreliance and dependency on these systems. People might rely too heavily on AI-generated content without critically evaluating its accuracy or considering alternative perspectives, leading to intellectual laziness and bigotry. 
  5. Unintended Consequences:  It’s easy with these systems to produce “credible” spam, phishing, or propaganda with very negative societal impacts.

Recognizing and addressing these negatives is important to ensure the responsible development and deployment of generative AI technologies. We are fully aware of that at Fullpower-AI and think about it continuously. 

Q2. What do you think is the Social Impact of Chat GPT-4? 

Philippe: Per your prior question ChatGPT, Bard, and others already have a profoundly positive and negative impact. 

For example, more advanced generative AI could increase automation in various industries and job sectors. While this can improve efficiency and productivity, it may also result in job displacement or changes in the job market, requiring individuals to adapt to new roles and acquire new skills.

It’s important to remember that these are all speculative impacts based on the general trajectory of AI advancement. The specific social impact of the AI systems would depend on various factors, including design, deployment, and the actions taken by developers, policymakers, and society to shape its use.  

AI will neither save nor doom the world. It’s people that will. 

Q3. Do you use Chat GPT-4?  What do you think about it? 

Philippe: At Fullpower-AI, we build domain-specific generative AI systems targeting sleep management, breathing anomalies, skincare, industrial automation, etc. As general-purpose systems, ChatGPT and Bard have proven their usefulness. It’s important to remember the safeguards per your question 1. 

Q4. In the interview above, it is mentioned that,  “GPT-4 is just one step toward OpenAI’s goal to eventually build Artificial General Intelligence, which is when AI crosses a powerful threshold which could be described as AI systems that are generally smarter than humans.” Is this Science Fiction, or is it something that may happen? 

Philippe: Building Artificial General Intelligence is challenging. It remains controversial. This is way passed the Turing test because human behavior and intelligent behavior are not the same things.

Regarding feasibility, there are varying opinions regarding the potential for achieving AGI. I believe we will achieve 90% of AGI in the next decade. The last 10% may take a very long time. 

It is important to approach AGI development cautiously, ensuring responsible and ethical practices are in place to address potential risks and consequences. Continued research, collaboration, and discussions are necessary to advance our understanding of AGI and its societal implications.

Qx anything else you wish to add here?

Philippe:  While there is no definitive answer, it is crucial to consider the potential risks and take precautions to ensure AGI’s safe development and deployment. To mitigate risks, we advocate for AGI’s development with safety and ethics. Part of the challenge is the geopolitical competition. We must ensure that nations on the fringe don’t exploit loopholes. Personally, I believe in progress and that AI technology can have a deep positive impact on our future. 


(*) Source: abc news. OpenAI CEO, CTO on risks and how AI will reshape society, March 16, 2023, 


Philippe Kahn is a highly successful serial entrepreneur who founded a number of leading companies, including Fullpower-AI, LightSurf, Starfish Technologies, and Borland.

Feb 6 23

On Innovation. A Conversation with Philippe Kahn

by Roberto V. Zicari

 I always think about a graduate class called “Invent.” Innovation has to be based more on spark than process. “

I asked ten questions on innovation to Philippe Kahn back in February 2006. Now this is a new revision…


Q1. What is Innovation for you?

Philippe Kahn: Innovation is a key success ingredient for science, business, and personal growth. It is all about bringing something new: New ideas, new devices, and new methods. 

Q2. What pivotal role did your parents play in your personal development?

Philippe Kahn: Yes, I grew up with a single Mom, my hero. Here Wikipedia speaks for itself: Clair Monis.

Q3. Besides a master’s in mathematics, you also received a master’s in musicology composition and classical flute performance. Did music influence your career as an entrepreneur? How?

Philippe Kahn: Playing music is part of my daily practice. My Mom, a concert violinist, would make me practice 30 minutes before going to school. This has become a daily life discipline like meditation. I play both Jazz and classical music daily. 

Q4. You are credited with creating the first camera phone. You had a vision, but this did not materialize at that time. What is the main lesson you learned from this?

Philippe Kahn: Pioneering visions never materialize instantly. We created the first working prototype in 1997, launched it in Japan toward the end of 1999, then in the US in 2002. In 2007 Steve Jobs and Apple launched the iPhone, and the market grew. Here is a helpful link

Q5. You are also credited with being a pioneer in wearable technology. This developed into Fullpower-AI: AI-modeled biosensing algorithms and embedded AI Machine Learning solutions and generative AI for Synthetic trial augmentation. What obstacles did you have to overcome, to make this vision reality? Who helped you to make it a reality?

Philippe Kahn: Our team at Fullpower-AI created the first iteration of our IoT biosensing platform. We thought that the first application was for wearables. We built complete solutions for Nike and launched Nike Running solutions. We also licensed our technology to Jawbone in 2011. It is all internal development: Device, sensing, firmware, security, cloud, and actionable insights. Now we are focused on digital transformation with our IoT/AIoT biosensing platform. Our goal is to help transform sleep, cosmetics, wellness, and medicine by leveraging our platform. 

Q6. What do you consider are the current most promising innovations that will have an impact in the near future?

Philippe Kahn:. We all know of the impact of generative AI on creating content such as text, music, and graphics. It’s helpful to many, but there may be a few hints of plagiarism. I think that generative AI could be helpful in helping people develop better writing, musical, and graphic skills. However, the most promising applications of AI are in wellness, health, and medicine. We may finally make significant progress in tackling challenges such as Alzheimer’s, Cancer, etc. All this is possible because of the combination of IoT, AIoT, biosensing, and deep learning. 

Q7. In 2006 you mentioned that Vision, Leadership, and Perseverance were in your opinion the top 3 criteria for successful Innovation. Did you change your mind in the meanwhile?

Philippe Kahn: Yes, Vision, Leadership, and Perseverance are key. Let’s sprinkle a bit of luck too. With Fullpower-AI and our IoT/AIoT platform, we were early in 2010, now we look like an “overnight success!’

Q8. What is a culture that supports and sustains Innovation?

Philippe Kahn: No matter what size, visionary leadership is key. It’s necessary but sometimes not sufficient. Augmenting the teams with the best talent is key while setting up non-invasive disciplined processes. 

Q9. What should be taught in universities to help Innovation that is currently missing in your opinion?

Philippe Kahn: I always think about a graduate class called “Invent.” Innovation has to be based more on spark than process. 

Q10. You and your wife Sonia run the Lee-Kahn Foundation. Tell us a bit about it.

Philippe Kahn: Yes, we like to focus on the environment, in particular wild life, animal welfare, and conservation. Our founding vision is utopian, yet something we can get behind. It reads like this: “May our children and our children’s children enjoy better health and be able to hear the howl of a Wolf Pack in the wild, experience the magic of Dolphins playing with the ocean waves, drink pure water from every stream… “


Philippe Kahn is a highly successful serial entrepreneur who founded a number of leading companies, including Fullpower-AI, LightSurf, Starfish Technologies, and Borland.


On Innovation.  Archive of interviews (2006-now)

Jan 13 23

On Cloud Database Management Systems. Interview with Rahul Pathak.

by Roberto V. Zicari

IT teams no longer want to be consumed by undifferentiated heavy lifting so that they can focus on strategic business goals and innovation. This is very liberating, and we believe that this is a major growth driver. 

Q1: In your opinion what is the status of the database market today and in the next years to come? 

Rahul: The broader database market trend is more of a question for analysts. Our unwavering focus is to continue innovating on behalf of customers to make advanced database features more approachable while reducing the costs and complexities of maintaining databases. IT teams no longer want to be consumed by undifferentiated heavy lifting so that they can focus on strategic business goals and innovation. This is very liberating, and we believe that this is a major growth driver. 

Q2: You just wrapped up re:Invent 2022. Is re:Invent the high point of the year in terms of your database announcements? 

Rahul: re:Invent is always an exciting and energizing event. That said, we actually release new innovations throughout the year, when they are ready. For example, we released some big innovations earlier in 2022, like Amazon Aurora Serverless v2Amazon RDS Multi-AZ with two readable standbys, and a whole lot more. We also have announcements at re:Invent in addition to providing attendees a hands-on learning experience of our services. 

Q3: Can you share some details on these more notable launches prior to re:Invent?  

Rahul: Absolutely. We launched Amazon Aurora Serverless v2 (ASv2), which provides customers the ability to instantly scale up and down in fine grained increments based on their application’s needs. ASv2 is particularly useful for spiky, intermittent, or unpredictable workloads. Manually managing database capacity can take up valuable time and can lead to inefficient use of database resources. With ASv2, customers only pay on a per-second basis for the database capacity that you use when the database is active. ASv2 has become the fastest adopted feature in the history of Aurora. Customers, like Liberty Mutual, S&P Global, and AltPlus, have used ASv2 to reduce their costs while achieving improved database performance. 

Another feature launch that has proven compelling to customers is the release of Amazon RDS Multi-AZ with two readable standbys in different AZs, improving both performance and availability. As you may know, we launched Multi-AZ deployment back in 2020 in which we automatically create a primary database (DB) instance and synchronously replicate the data to an instance in a different AZ. When it detects a failure, Amazon RDS automatically fails over to a standby instance without manual intervention. Now, the launch of Multi-AZ two standbys adds another layer of protection and significant performance benefits. With this feature, failovers typically occur in under 35 seconds with zero data loss and no manual intervention. Customers can gain read scalability by distributing traffic across two readable standby instances and up to 2x improved write latency compared to Multi-AZ with one standby.  

Q4: During re:Invent, it was mentioned that AWS also recently launched serverless and global database for your graph database, Amazon Neptune. Can you share some details on this? 

Rahul: Yes, Amazon Neptune is now our sixth database to be serverless and our fifth database with ability to scale reads globally across regions. Both of these capabilities are important for modern day applications with global performance requirements at scale. I should also mention that for our first ever serverless database, Amazon DynamoDB, we recently announced the capability to import data from S3. This further underscores our focus on increasing interoperability and integration across our services to minimize effort by customers in moving their data to where they need it. 

Q5: On the heels of re:Invent, AWS became the new Leader of Leaders in the Gartner MQ for Cloud Database Management Systems 2022. That’s a remarkable achievement. How is AWS thinking about this recognition? What are the main strengths that Gartner found in your offering? Are there any weaknesses? 

Rahul: While AWS has been named as a leader for the eighth consecutive year, we were elated and humbled to be positioned highest in execution and placed furthest in vision among the top 20 data and analytics companies in the world. We think listening to our customers and solving their most challenging problems is key. We engage closely with customers on product roadmaps and work diligently to deliver on our commitments as promised. Our own experience in operating our e-commerce business has and continues to also be a wellspring of learnings for what it takes to build massive modern internet scale applications serving customers on a global scale. 

In their 2022 report, Gartner called out the breadth of our services as a major strength. Our best-fit philosophy, targeted to specific use cases as needed by various applications and microservices, is really paying off. No vendor ever gets a perfect score and Gartner also noted that there is still upside from better integration between our sevices. Gartner gave us credit for a progress towards an integration roadmap, and this continues to be a major roadmap theme for us. At re:Invent, we announced Amazon Aurora zero-ETL integration with Amazon Redshift, and we’re eager to continue delivering on our integration roadmap. You can read the report here

Q6. What were the overarching themes around your announcements at re:Invent 2022? 

Rahul: Our database business tracks several themes that we deliver against. Of these themes, there were three that were at the center of our announcements. These themes were interoperability across services, advancing performance and scale, and operational excellence by making security and advanced operational techniques more approachable. 

Q7: Why are these themes important? 

Rahul: Interoperability across our services is important because it improves productivity across development and operations teams. Integration between services is needed as part of building modern applications. It’s a question of where the integration occurs. Application developers often have to include this integration as part of their application code or solution architects must take extra measures to include additional integration components which increases complexity. If the integration is built in under the covers, then that’s one big area developers and architects don’t need to worry about. 

Performance and scale are important because of the deluge of data and types of data organizations are experiencing and will continue to experience. For almost every organization this deluge of data is a clear and present day-to-day reality. Customers need reassurance that they can scale-up and scale-out with real-time performance. 

Finally, the approachability of security and advanced operational techniques removes big hurdles that get in the way of organizations that don’t want to make massive investments in IT operations and specialized skills. It levels the playing field for the undifferentiated heavy lifting – things that are not core to the business but necessary for advancing the mission of the business. The definition of undifferentiated heavy lifting is expanding. Years ago, we started by removing the resources associated with hardware provisioning, database setup, patching, backups, and more. This is expanding to scaling up/down and scaling in/out based on an application’s needs, and removing the highly specialized skill sets and extensive resources otherwise required.  

Q8: What did AWS announce in support of interoperability across services? 

Rahul: We announced the preview of interoperability between Amazon Aurora and Amazon Redshift. Each of these services leads in their categories – Amazon Aurora as an operational database and Amazon Redshift as an analytical database. 

The traditional approach to integration between operational and analytical databases is to use generalized ETL or ELT. This is beset with problems in so many ways. It’s complex and heavy, often requiring manual coding of SQL to optimize query performance. It’s harder to setup, maintain and use. Maintenance and the lifecycle management of this type of data integration is worsened by the inherent fragility of this approach – the integration breaks when there is a change to the source or target schema. This requires extensive testing after every change. What you get after taking on all these burdens is usually a low performance, non-elastic solution that doesn’t adapt well to changing workloads. 

We announced the preview of a purpose-built, point-to-point, fully managed integration that doesn’t suffer from these issues. Our Amazon Aurora zero-ETL integration with Amazon Redshift can consolidate data from multiple Aurora databases to a single Redshift database, giving you the benefit of near-real-time analytics on unified data. This opens up an entire category of use cases for time sensitive analytics on fresh data. 

The integration is easy to setup – creating a Redshift integration target, whether it’s a new or existing endpoint, is easy. Furthermore, we designed this zero-ETL integration for easy maintenance adapting to Aurora side schema changes. Database or table additions and deletions are handled transparently. If a transient error is encountered, the integration automatically re-synchs after the recovery from the error. 

Data is replicated in parallel, within seconds. So large data volumes are not a problem. On the Amazon Redshift side, you can transform data with materialized views for improving query performance. 

Q9: Now shifting to performance and scale, what are the highlights? 

Rahul: We announced three key new features starting with Amazon DocumentDB Elastic Clusters which will horizontally scale writes with automated operations. As you may know, we can already horizontally scale reads across all our popular databases using read replicas. For Amazon DocumentDB, our customers needed the ability to horizontally scale writes beyond limits of a single node. Amazon DocumentDB Elastic Clusters uses sharding, a form of partitioning data across multiple nodes in a cluster, so that each node can support both reads and writes in a multi-active approach. When data is written to a node it is immediately replicated to the other nodes. This has the added benefit of supporting massive volumes of data. What’s exciting is Amazon DocumentDB can scale to handle millions writes (and reads) per second with petabytes of storage capacity. 

In addition to horizontal scaling, we also invested in optimizing the performance of a single database instance. Our announcement of Amazon RDS Optimized Writes and Amazon RDS Optimized Reads for MySQL are examples of this. Both of these enhancements improve our internal implementation to improve performance. 

Prior to RDS Optimized Writes, atomicity of writes was handled by writing pages twice. Smaller chunks of a page were first written to a “doublewrite buffer” and then written to storage. This protects against data loss in case of failure, but two writes take longer and consume more I/O bandwidth reducing database throughput and performance. For use cases with a high volume of concurrent transactions, to solve for durability customers also need to provision additional IOPS to meet their performance requirements. Optimized writes work by atomically writing more data to the database for each I/O operation. So, this means that the pages are written to table storage durably as a single atomic operation in one step. With Optimized Writes, customers can now gain up to 2x improvement in write transaction throughput at no additional cost and with zero data loss. 

With RDS Optimized Reads, read performance is improved by leveraging data proximity. A MySQL server creates internal temporary tables while processing complex or unoptimized queries like analytical queries that require grouping, sorting etc. When these temporary tables cannot fit into memory, the server defaults to disk storage. With Optimized Reads, RDS places these temporary tables on the instance’s local storage instead of an Elastic Block Storage volume, which is shared network storage.  It’s the local availability of temporary data that makes queries up to 50% faster. 

Q10: How about security and operational excellence, what did AWS announce for this theme? 

Rahul: Security is of utmost importance and an area of sustained investment for us. We announced the preview of Amazon GuardDuty RDS Protection, which protects Amazon Aurora databases from suspicious login attempts that can lead to data exfiltration and ransomware attacks. It does this by identifying anomalies, sending intrusion alerts, managing stolen credentials, and more. Our goal with GuardDuty was to create a tool that’s easy to enable and produces timely, actionable results. We use machine learning to accurately detect highly suspicious activities like access attacks using evasion techniques. Security findings are enriched with contextual data so you can quickly answer questions such as what database was accessed, what was anomalous about the activity, has the user previously accessed the database, and more. Aurora is the starting point. We’ll also extend this capability to other RDS engines. 

We also announced Trusted Extensions for PostgreSQL, an open-source development kit and project, available for Amazon Aurora and Amazon RDS. This project is focused on increasing the security posture for extensions starting with PostgreSQL.  

Developers love PostgreSQL for many reasons including the thousands of available extensions, but adding extensions can be risky. This makes certification of extensions very important. Our customers asked us for an easier way to use their extensions of choice and also build their own extensions. It’s impractical for AWS to certify the long tail of extensions, so we worked with the open-source community to come up with a more scalable model. 

Trusted Language Extensions for PostgreSQL is a framework that empowers developers and operators to more safely test and certify extensions. Now, as soon as a developer determines an existing extension meets their needs or is ready to implement a custom extension, they can safely test and deploy it in production. Developers no longer need to wait for AWS to certify an extension to begin implementation because Trusted Language Extensions are considered to be part of your application. It provides a safe approach because the impact of any defects in an extension’s code is limited to a single database connection. Trusted Language Extensions supports popular programming languages that developers love including JavaScript, Perl, and PL/pgSQL. We do plan to support other programming languages so stay tuned for announcements in 2023.  

Q11: What else did AWS launch for making advanced operational techniques more approachable?   

Rahul: I am also excited about Amazon RDS Blue/Green Deployments, which automates an advanced DevOps technique – and this is available for MySQL in both Amazon RDS and Amazon Aurora. In the current atmosphere of 24/7 operations, downtime for updates (security patches, major version upgrades, schema changes, and more) or disruptions or data loss due to failed attempts at updates are not acceptable.  

In this DevOps technique, the production environment is the ‘blue’ environment and the staging environment is the ‘green’ environment. For organizations with advanced DevOps skills, they will test new versions of software in a ‘green’ environment under a production load, before actually putting it in production. But this requires advanced operational knowledge, careful planning and time. With RDS Blue/Green Deployments, we provide a fully managed staging environment. When an upgrade is deemed to be ready, the database can be updated in less than a minute with zero data loss – a much simpler, safer and faster approach to database updates. 

Another launch is AWS Database Migration Service (DMS) Schema Conversion making heterogeneous migrations operationally easier. Previously, a separate schema conversion tool was needed for mapping the data at the source database to the target database. Now the schema conversion is integrated with DMS, making schema assessments and conversions much simpler. Heterogenous schema conversion can now be initiated with a few simple steps, reducing set up time from hours to minutes. 

Q12: Would you like to add anything else? 

Rahul: A good way to come up to speed with the latest from AWS and the art of the possible is to watch recordings from re:Invent. We showcased product announcements and a breadth of sessions that cover our product roadmap and best practices. You can also learn more from our database category page, and database blog. We’re energized and focused on innovating for our customers! Feedback is always welcome and I encourage all customers to reach out so we can help no matter where they may be on their journey to the cloud – simply complete our  Contact Us form.  


Rahul Pathak is Vice President, Relational Database Engines at AWS, where he leads Amazon Aurora, Amazon Redshift, and Amazon QLDB, AWS’ core relational database engine technologies. Prior to his current role, he was VP, Analytics at AWS where he led Amazon EMR, Amazon Redshift, AWS Lake Formation, AWS Glue, Amazon Athena, and Amazon OpenSearch Service. During his 11+ years at AWS, Rahul has focused on managed database and analytics services with previous roles leading Emerging Databases, Blockchain, RDS Commercial Databases, and more. Rahul has over twenty-five years of experience in technology and has co-founded two companies, one focused on digital media analytics and the other on IP-geolocation. He holds a degree in Computer Science from MIT and an Executive MBA from University of Washington. 


AWS positioned highest in execution and furthest in vision

Gartner has recognized Amazon Web Services (AWS) as a Leader and positioned it highest in execution and furthest in vision in the 2022 Magic Quadrant for Cloud Database Management Systems among 20 vendors evaluated. This Magic Quadrant report provides cloud data and analytics buyers with vendor insights based on Gartner research criteria. AWS has been a Leader in the report for eight consecutive years.  

Magic Quadrant for Cloud Database Management Systems

Published 13 December 2022 – ID G00763557 – 71 min read

Figure 1: Magic Quadrant for Cloud Database Management Systems (source Gartner (December 2022)

Read the Gartner Report

Related Posts


Deep Dive Amazon DocumentDB Elastic Clusters. Q&A with Vin Yu

Follow us on Twitter: @odbmsorg

Mar 21 22

On Using in Memory Database. Interview with Jonah H. Harris

by Roberto V. Zicari

” Whether it’s adding features, fixing bugs, or improving performance, it all comes down to the quality of the code.”–Jonah H. Harris.

Q1. You are the director of Artificial Intelligence & Machine Learning at The Meet Group. What are your current responsibilities?

Jonah H. Harris: AI and ML research is rapidly growing. Staying on top of those advancements to identify key strategic opportunities and improvements that deliver novel and strategic solutions, which solidify our position as leaders in personal connection, is paramount. While setting direction is important, my primary goal is to shape, grow, and lead an exceptional team of Machine Learning Engineers to research, design, develop, and implement innovative solutions and advance our company’s capabilities across multiple business units. Our focus areas primarily include deep learning, natural language processing, computer vision, recommendation, ranking, and anomaly detection. It’s quite a bit to remain current on these days. 

Q2. What do you use Artificial Intelligence & Machine Learning for?

Jonah H. Harris: At The Meet Group, we provide multiple brands and platforms which enable members to identify potential partners for romantic, platonic, and entertainment purposes. While traditional recommendation systems match items (e.g., books, videos, etc.) with a user’s interests, we aim to match people who are mutually interested in and likely to communicate with each other. While recommendation is a critical component of our business, additional work is required to perform abuse prevention and improve monetization – all of which are enhanced using a combination of data science, machine learning, and artificial intelligence. Our team employs many different techniques and technologies to accomplish each area mentioned above as quickly and efficiently as possible.

Q3. You have been working previously as the VP of Architecture and Lead DBA, overseeing high performance data access. What were your most important projects?

Jonah H. Harris: Now paired with Parship, The Meet Group is a worldwide leader in personal connection with a globally distributed workforce. When I joined as the Lead DBA in 2008, however, it was a small social network named myYearbook based in New Hope, Pennsylvania. Through multiple acquisitions and stages of the company, from private to NASDAQ-listed and private once again, I’ve been fortunate enough to grow with the organization and hold various positions from individual technologist to Chief Technology Officer. I’ve always enjoyed challenging work and my current position, overseeing AI/ML, is no different.

When I think of all the projects I’ve architected or developed over the years, one of the most fun and architecturally challenging was the reciprocal matchmaking system designed for a game called BlindDate.

BlindDate was a questionnaire-based matchmaking system that allowed members to select questions about themselves, supply their own answers, and identify their desired partner’s answers. To be “matched,” other members would need to answer the same questions along with the desired answers bi-directionally. One important implementation caveat was that we did not want to precompute these matches – they had to be done in (soft) real-time. We found many members would submit hundreds or even thousands of questions. While we did our best to partition this problem into an optimal search space, performing this reciprocal match was a performance challenge.

For our MVP, we initially designed this to use a relational database. Early on, however, we found this began to take around eight hundred milliseconds per request. As the game scaled, this would never work as initially designed. This led us to look at eXtremeDB.

Coupled with its new (at the time) multi-version concurrency control (MVCC) transaction manager and ability to control the low-level data structure format, we were able to design a bitwise-optimized matching algorithm. As a result, the eXtremeDB-based implementation dropped the response time of a single request down to seventy-six microseconds on the exact same hardware; it also reduced memory usage by two-thirds. 

Q4. What are the main challenges you have encountered to achieve high performance data access?

Jonah H. Harris: Largely, a primary challenge is defining the appropriate structure to store and query data. Relational databases are great for general-purpose data management. On the other hand, NoSQL-oriented systems are great for flexibility. Similarly, systems such as Redis provide a unique ability to perform tasks that can’t easily be done with great performance in a traditional database management system. When designing an application, you have to choose the best tool for the job and make trade-offs where necessary. In some cases, this requires utilizing multiple data management technologies or sacrificing performance on one task in favor of another. It’s hard to find a system that’s both as flexible as it is fast: eXtremeDB is really the only contender in that category I’ve found.

Q5. Can you tell us about some of the work you have done with eXtremeDB?

Jonah H. Harris: In addition to the BlindDate case mentioned above, we experimented with storing a graph database structure in eXtremeDB – it was highly performant and gave us the ability to store the graph in an optimal form while also making it queryable via SQL.

eXtremeDB is so good that I have personally licensed it to develop and test out my own ideas and implementations of various systems. I’ve built everything from a Redis-compatible service to real-time recommender systems based on eXtremeDB.

I’m actually in the process of writing a book for Apress, Realtime Recommendation Systems: Building Responsive Recommenders from the Ground Up, and testing out several of those algorithms with eXtremeDB as well. Compared to several well-known open-source recommenders, my eXtremeDB-based versions consistently demonstrate several hundred percent improvements in performance. This is due to eXtremeDB’s highly-optimized in-memory implementation, which doesn’t force me to sacrifice on-disk capabilities as other systems do. Additionally, I’ve always licensed the eXtremeDB source code, which is rare for a company to offer. With that, I’ve been able to gain a solid understanding of internals and compile-time optimizations, enabling me to make even better performance gains. The code is immaculate, and McObject is equally great about accepting patches for additional functionality.  

Q6. Why choosing eXtremeDB?

Jonah H. Harris: If my earlier answers haven’t already praised its modularity flexibility enough, I’ll state it more clearly: with over twenty years of professional experience not only administering and developing against databases but also working on their internals, eXtremeDB is the only system I’ve found that gives developers the ability to build almost anything with very few constraints.
Likewise, McObject’s support is exceptional. You can ask as detailed of a question as you can imagine and get a solid answer, in many cases from the engineers themselves. 

Q7. You have implemented a number of features for commercial and open-source databases. What are the main lessons you have learned?

Jonah H. Harris: Whether it’s adding features, fixing bugs, or improving performance, it all comes down to the quality of the code. Unfortunately, most open-source database code is abysmal. Postgres, InnoDB (proper), and Redis are exceptions. That said, you’d expect commercial implementations to be so much better – but they’re usually not. It’s sad, really.

While I didn’t know it initially, part of the team behind eXtremeDB was also behind the old Raima Database Manager (RDM). In the late nineties, I used RDM quite a bit and had a source code license for its code as well. Aside from the MASM-based NetBIOS lock manager implementation, which I believe they acquired from a third-party developer, it was an extremely well-written system with great documentation. So, when I found out eXtremeDB was a brand new, from the ground-up, in-memory-optimized system with very similar developer-friendly embedded database design goals, I was sold!
Sure, I’ve worked on the internals of many different database systems. But, I have no problem understanding the code to eXtremeDB at all. It’s all well-organized and straightforward, which is hard to do for a system that supports multiple transaction managers and is optimized for both in-memory and on-disk operations.  

Q8. You are an active open-source contributor. What are your current open source projects you contribute to? 

Jonah H. Harris: As of late, I haven’t had a great deal of time to do much open-source work. Database-wise, my latest contributions are to Redis, adding a few useful commands and performance optimizations. The rest are generally bug fixes or feature additions in libraries I frequently use.

Q9. What is your experience of using open source software for mission critical applications?

Jonah H. Harris: I’ve always been a big advocate of open-source. I remember first using FreeBSD and Linux in the mid-90s when I was in middle school. That said, I’m huge on choosing the best tool for the job at hand. Sometimes that’s open-source, and sometimes it’s not.

In the early 2000s, I was hired to lead the development of a Johnson & Johnson brand’s rewrite of their CFR Part 11 quality system ERP module from PowerBuilder to Apache+PHP. We used a good amount of open-source, but it still ran on top of HP-UX and Oracle. Did it need to? No. But that’s what they were comfortable with and, to be honest, those were a better choice stability-wise at the time.

These days, when I’m building a general back-end web-based API, I default to Node.js+NGINX, Postgres, and Redis. As most things are containerized on top of a Linux distribution these days, it’s hard to beat that stack. Language-wise, I like TypeScript, though I do see cases for Rust and Go in the future.

That said, when I’m building a performance-optimized system, I still prefer C with libuv for networking. For data management, I’ll use eXtremeDB when I need MVCC or dual in-memory/on-disk functionality. There’s no need to reinvent that, and nothing is nearly as fast. Otherwise, I’ll use klib data structures for simple single-threaded apps.

Open source is great, and it’s come a long way. But, there are still valid cases for using commercial systems.

Qx Anything else you wish to add?

Jonah H. Harris: For the most part, IMDB systems have always been considered a niche: you either know about them or you don’t. eXtremeDB is an IMDB-optimized system, but its functionality far surpasses its competitors in every aspect. It can be used locally or distributed, with and without SQL,  in-memory only or as an on-disk hybrid, in-process and as a server, with high availability, vector-optimized operations, real-time embeddability, source code, and many compile-time optimizations. More people really should know about it; it’s a genuinely fantastic system.


Jonah H. Harris Director of Artificial Intelligence & Machine Learning, The Meet Group.

Leader. Entrepreneur. Technologist. NEXTGRES Founder. Former CTO at The Meet Group. OakTable Member. Open Source Contributor. Founding Member of the Forbes Technology Council.


McObject and Siemens Embedded Announce Immediate Availability of eXtremeDB/rt for Nucleus RTOS

Related Posts

On eXtremeDB/rt. Q&A with Steven Graves. OCTOBER 8, 2021

Follow us on Twitter: @odbmsorg

Mar 7 22

On Cloud Database Management Systems. Interview with Jordan Tigani

by Roberto V. Zicari

“If a company starts as an on-premise business and decides to become relevant in the cloud space it requires dedicated energy devoted to changing the culture.

...If there was a lesson to share it would be to not under-invest or think it will be easy. You also need to hire people with cloud experience. There are a number of areas where you can hire smart people and they will pick up what they need, but if you’re trying to make a transition there is no substitute for actual hands-on experience with what happens when you try to scale.” — Jordan Tigani.

Q1. You are Chief Product Officer at SingleStore since June 30th, 2020. What are the main projects you have been working at SingleStore?

Jordan Tigani: The number one thing that I’ve been focused on is helping SingleStore transform into a cloud company. This means more than having a product that runs in the cloud; you need to reimagine how you build software, how you monitor it, how you support it, and what features you need. We’ve got a great team that has taken these ideas and ran with them, but to some extent, this is a cultural change, and that takes a lot of time and directed energy. 

I’ve also been working on refining the mission and completing the technology so that it solves all use cases. For the last year, we’ve been focused on data-intensive applications, which are, broadly, applications that hit bottlenecks in data. This is a growing subset of the database market, as richer applications tend to want to do more interesting things with their data.

Q2. You co-created Google BigQuery as a founding engineer and went on to be the Director for Engineering Director and also Product Management. How much has your work at Google influenced your current work at SingleStore?

Jordan Tigani: My two biggest learnings from Google were how to build a cloud product that scales (when I left BigQuery it was using about 3 million CPU cores) and a deep customer empathy for the cloud analytics market.

I also saw a lot of things that customers wanted to do, but we had a hard time making the technology work to solve their problems. One of our tech leads had a great saying: “It’s just code.“ This meant that given enough time, you could make any feature work. However, if you didn’t have the right architecture you would hit limitations, and all the clever coding in the world would be able to help you. 

Some of the things that BigQuery customers were pushing us to do—like being able to do rapid updates, or serve low latency queries—were things that were incredibly difficult to do with the architecture. Many of these same things were problems that SingleStore had already solved, and by virtue of their architecture, there was a technological moat that would be hard for competitors to cross.

Q3. The tag line of SingleStore is “The Single Database for All Data-Intensive Applications for operational analytics and cloud-native applications“. To demonstrate how fast SingleStore is on both transactional and analytical workloads you did comparative benchmarks against leading cloud vendors for both TPC-H (analytics) and TPC-C (transactions). What were the main results?

Jordan Tigani: The main takeaway was that SingleStore is as fast or faster on analytics benchmarks as cloud data warehouses, and is as fast or faster than cloud operational databases at transactional benchmarks. This means that in one database, with one storage type, you can get stellar performance on both transactions and analytics, which many people think is impossible. This brings us closer to having a “general purpose” database, where you don’t have to necessarily plan what you’re going to do with it before you start using it.

Q4. Why did you compare separately your performance at TPC-H with data warehouse vendors, and TPC-C with only one operational database vendor? What did you learn?

Jordan Tigani: On the analytics side, the main cloud data warehouse vendors have been engaging in public benchmark wars and focusing on performance. We didn’t want to escalate the amount of noise being thrown around, but we did want to call attention to the fact that we can put up some pretty stellar numbers ourselves.

We only measured one operational database vendor because TPC-C is harder to set up, and because of the way it is defined, it doesn’t provide rich information like TPC-H. We’re working with a third-party vendor to release a more detailed report, which will include additional operational database vendors.

Q5. How did your perform the test?

Jordan Tigani: We had ignored benchmarks for a long time since they often do not correlate with real-world performance. But in recent months, data warehouse vendors have been poking each other about TPC results.  So, we put a couple of engineers on the problem and had them run some tests against our database and competitors. 

When you run competitive benchmarks yourself you often get accused of selective reporting or cheating (Databricks and Snowflake had a recent public spat about this). We’ve hired a third-party vendor to reproduce the results and the report should be out in another month or so. When they do publish their report, they’ll also reveal the companies they are comparing us against. 

Q6. You mentioned in the article that your benchmark runs used the schema, data and queries as defined by the TPC. However, they do not meet all the criteria for official TPC benchmark runs, and are not official TPC results. Isnt`t this a limitation to the acceptance of such bechnmarks?

Jordan Tigani: It is very expensive and difficult to do an official TPC submission, and at the end of the day, it doesn’t tell you much. For TPC-H, for example, we did a “power run,” which means running the queries sequentially. This shows off the ability to perform well in several different query shapes that are indicative of a data warehousing workload. It is a lot harder to run a full TPC-H benchmark as it involves multiple concurrent queries and changing data.

Q7. Not every workload needs transactions and analytics. What are the typical applications that need some flavor of both?

Jordan Tigani: There are two types of applications that need both analytics and transactions. The first is applications that are doing analytics. That is, they’re showing custom dashboards and slicing and dicing data. They tend to need up-to-the-moment data and low latency because they’re serving requests to end-users. They also need high concurrency because they are being used by analysts and are part of the end product being served. Data warehouses aren’t a great option in this use case, because they can’t scale to high concurrent user counts and are generally designed for throughput rather than low latency. SingleStore has a lot of customers in the financial services industry who back a lot of their portfolio analytics tools behind SingleStore databases.

The other type of application that needs analytics and transactions is one that wants to make use of data to enrich the experience. Maybe they want to do a product search and faceted drill-down. Maybe they want to show a leaderboard at a game. Traditional databases aren’t always great at these use cases once you get beyond a certain scale, and then performance can fall off a cliff. People end up stitching multiple databases together—maybe adding a cache on top of it because it is slow—and then have to deal with complexity to keep a consistent model and all the data in sync. Have you ever seen an application that showed a notification or unread message count, and then when you clicked on it there weren’t any notifications or unread messages? This is one of the ways this pattern shows up to the detriment of users; if they had used SingleStore they could keep those values in sync.

Q8. You are quoted saying that “Making the jump to being a cloud-native rather than just a company who runs their product on the cloud requires deep changes throughout the organization”. What are the key lessons learned you wish to share?

Jordan Tigani: If a company starts as an on-premise business and decides to become relevant in the cloud space it requires dedicated energy devoted to changing the culture. We drew up a 24-point score card last year and graded where SingleStore was on every axis of cloud readiness. The score card had everything from Elasticity to Auth to Scalability. We created a plan to get everything to “green” – it takes a long time and a lot of sustained energy, but it was worthwhile to do so.

It paid off considering we were one of the 20 databases recognized by Gartner in the 2021 Magic Quadrant for Cloud Database Management Systems. We believe that is something that could have not happened if we didn’t dedicate significant energy to making sure we were thoroughly cloud.

If there was a lesson to share it would be to not under-invest or think it will be easy. You also need to hire people with cloud experience. There are a number of areas where you can hire smart people and they will pick up what they need, but if you’re trying to make a transition there is no substitute for actual hands-on experience with what happens when you try to scale.

Q9. How is the pandemic changing the market for enterprise infrastructures?

Jordan Tigani: The pandemic is changing the market for enterprise infrastructure in two ways. First, it is accelerating the transition to the cloud. If you’ve got a physical server somewhere you have to have staff that physically maintains those machines, which goes in the opposite direction of a workforce that is becoming more distributed and remote in the pandemic.

Secondly, the pandemic is accelerating the need for fast, accurate data. If you’re in the office, you can often tell how things are going by the “buzz.” But if your only connection to your team and your customers is through zoom, there is a lot of key information that is missing. The only way to get some semblance of that information back is through data and being able to mine what customers are doing, how sales are going, and how much attrition you’re seeing in the workforce. 

Big data analytics tools were, to some extent, developed to handle cases where you had so many customers that you couldn’t meet them all and could only get a pulse by looking at data. Google and Amazon are two companies that relied heavily on data because they had to. These techniques are being applied successfully when you may not have billions of customers, but have a difficult time reading their pulse.

Q10. Can you tell us a bit how did you help True Digital in Thailand to develop heat maps around geographies with large COVID-19 infection rates? What lessons did you learn?

Jordan Tigani: True Digital is a telecom provider in Thailand that was able to use cellular data to help track the spread of the pandemic. In the early days of Covid-19, there was a huge focus on getting answers quickly and they were able to build out and ship an application on top of SingleStore in a matter of weeks. One lesson we learned was that if you need to build something in a hurry that needs to scale quickly, making sure you have the right tools when you start is important. SingleStore was ideally suited for True Digital’s needs, and we helped them get something out faster than they would have otherwise. You can read more about our work with True Digital here.

Q11. You are quoted saying “I like the idea of using AI to augment and go beyond what you can do currently. There’s really intelligence, which is a step beyond analytics, which is driving real insight from the data and automatic insight from the data.” Can you please elaborate on this?

Jordan Tigani: There is a hierarchy of analytical needs, and at the base level is collecting data. If you don’t have the data, then you’re blind to what is happening in the data. 

The next step is understanding the data sources, which requires a feedback loop with a human to understand what the data is telling you. Too often people try to skip this step and jump right making decisions based on the data, and they end up making the wrong decisions because the data isn’t actually telling them what they thought it was telling them. A great example I’ve seen of this is when people were looking at counts of customers, but every customer that wasn’t logged in got the same customer ID, so the averages got completely skewed. 

Once you have data that is cleaned and reputable, you can start understanding what the data shows. This is where BI and dashboards come in. Insight tends to come from questions that someone asks, like  “why were my sales down in the southern region?”

Where it starts to get interesting is when you take the next step; making data-driven decisions. You have data that you understand and rely on, and you have been able to drill down and ask questions. AI and machine learning can help you all along the way–from figuring out what data to capture, to the structure of your data, to answering questions. As the last step, you need absolute trust in the lower levels of the system, or else you risk making a lot of bad decisions that you can’t diagnose.

Q12. You are Board Member of Atlas Corps, whose mission is to address critical social issues.

Jordan Tigani: There are generally two types of organizations that address social issues: those that address the issues directly, and those that seek to address the roots of the problems. For example, an organization in the former category would help distribute food during a famine while the latter would help teach sustainable farming. 

As an engineer and someone who appreciates the building of the right systems and architectures, organizations that help improve systems are most interesting to me. Atlas Corps generally goes one step further than just trying to address the root of problems; they seek to help train people who are themselves addressing the problem. Who are we to come in and tell people how to farm, for example? Why not help boost the people in those locations who already have the context, and help teach them how to build stronger and scalable organizations?

Q13. What are the current projects?

Jordan Tigani: The pandemic has been hard on Atlas Corps since their model involved bringing social sector leaders to the United States for training and service in social change organizations. If you can’t bring people into the country, or those organizations are working remotely, it’s difficult to make those programs work. Atlas Corps has been working on building out their model to handle remote work, at least partly, which has made it work and scale better during the pandemic. Their tagline is “talent is universal, opportunity is not,” which is a lesson I try to apply everywhere.


Jordan Tigani, Chief Product Officer, SingleStore.

Jordan is the Chief Product Officer at SingleStore, where he oversees the engineering, product and design teams. He was one of the creators of Google BigQuery, wrote two books on the subject, and led first then engineering and then the product teams. He is the veteran of several star-crossed startups, and spent several years at Microsoft working on bit-twiddling.


TPC Benchmarking Results.Genevieve LaLonde, Jack Chen, Szu-Po Wang, SingleStore, 2022

Related Posts

On AI, Cloud, and Data & Analytics. Interview with Sastry Durvasula and John Almasan. ODBMS Industry Watch, December 10, 2021

Follow us on Twitter: @odbmsorg

Feb 16 22

On IoT and InfluxDB. Interview with Paul Dix

by Roberto V. Zicari

Time is a critical context for understanding how things function. It serves as the digital history for businesses. When you think about institutional knowledge, that’s not just bound up in people. Data is part of that knowledge base as well. So, when companies can capture, store and analyze that data in an effective way, it produces better results.” –Paul Dix.

Q1. InfluxData just announced accelerated IoT momentum with new customers and product features. Tell us what makes InfluxDB so well-suited to manage IoT data.

Paul Dix: We’re seeing time series data become vital for success in any industrial setting. The context of time is critical to understanding both historical and current performance. Being able to determine and anticipate trends over time helps companies drive improvements in mission-critical processes, making them more consistent, efficient and reliable. We built InfluxDB to facilitate every step of this process. We’ve been fortunate to work with several major players in the IIoT space already, so we’ve been able to really understand the workflows and processes that drive industrial operations and better develop solutions around them. 

Q2. How do the new edge features for InfluxDB that you just announced help developers working with time series data for IoT and industrial settings?

Paul Dix: The new features give developers more flexibility and nimbleness in terms of architecture so that they can build more effective solutions on the edge that account for the resources they have available there. For example, we understand that some companies have very limited resources on the edge, so we’ve made it easier to intelligently deploy configurable packages there. By breaking down the stack into smaller components, developers can reduce the amount of software they need to install and run on the edge. At the same time, we want developers to have the option to do more at the edge if they can. That’s why we’ve made it easier to run analytics on persistent data at the edge and to replicate data from an edge instance of InfluxDB to a cloud instance.

We’re also working to make it easier for IoT/IIoT developers to manage the many devices that they need to deal with. One of our new updates allows developers to distribute processed data with custom payloads to thousands of devices all at once from a single script. On the other side of the equation, we have another new feature that helps contextualize IoT data generated from multiple sources, using Telegraf, our open source collection agent, and MQTT topic parsing.

Q3. What makes time series data so important for IoT and IIoT? 

Paul Dix: Time is a critical context for understanding how things function. It serves as the digital history for businesses. When you think about institutional knowledge, that’s not just bound up in people. Data is part of that knowledge base as well. So, when companies can capture, store and analyze that data in an effective way, it produces better results. For example, manufacturers may want to know how long a valve has been in service, or how many parts their current configuration can produce per hour. Time is a constant measure that creates a baseline for comparative purposes, generates a current snapshot for systems and processes, and reveals a roadmap for identified patterns to persist and therefore become more predictable. 

Time series data is well-suited to IoT and IIoT because it ties the readings from critical sensors and devices to the context of time. It’s also easy to use persistent time series data for multiple, different purposes. We can think about temperature in this case. In a consumer IoT context, such as a home thermostat, users primarily want to know what the current temperature is. In an IIoT context, manufacturers want to know the current temperature, but also what the temperature was in the last batch, or the batch from the previous week. Using InfluxDB to collect and manage time series data makes these kinds of tasks easy. At InfluxData, we’re fortunate that InfluxDB is one of a select group of successful projects and products where IoT, data, and analytics deliver significant value to organizations and the customers they serve.

Q4. Graphite Energy is featured in the announcement as a company that’s using InfluxDB to manage its time series data. Can you tell us more about the impact InfluxDB has had on its business?

Paul Dix: We’re really excited about our work with Graphite Energy – they’re an Australian company that makes thermal energy storage (TES) units. These devices get energy from renewable sources and store it until it’s required for industrial processes in the form of heat or steam. Its goal is to decarbonize industrial production. 

All of Graphite Energy’s operations are grounded in data – they’re collecting time series data from their devices out in the field and use InfluxDB to store and analyze these millions of data points they’re collecting daily. Graphite Energy uses that data to optimize its products, to guide remote operation, engineering and reporting, and to inform product development and research vectors. InfluxDB has also been a key component in the development of their Digital Twin feature. For this, they use time series data to generate a real-time digital model of a TES unit, that is accurate to within five percent of actual device performance. This allows them to roll backward g and forward in time to track performance. The Digital Twin is a key component of the company’s predictive toolkit and ongoing product optimization efforts. The more efficient Graphite Energy’s TES units are, the better they’re able to facilitate decarbonization. That’s a win for everyone.

Q5. How are some of your other IoT customers using the InfluxDB platform? 

Paul Dix: Our customers are doing great things in the IoT space. I’ll highlight just a few here quickly. 

  • Rolls-Royce Power Systems is using InfluxDB to improve operational efficiency at its industrial engine manufacturing facility. By collecting sensor data from the engines of ships, trains, planes, and other industrial equipment, Rolls-Royce is able to monitor performance in real time, identify trends, and predict when maintenance will be needed.
  • Flexcity monitors and manages electrical devices for its customers. They also monitor supply-side energy output and use that information to dynamically shed or store excess electrical load in their monitored devices to help with grid balancing and demand response. They use InfluxDB as their managed time series platform. They use Flux to calculate complex, real-time metrics, and take advantage of tasks in InfluxDB for alerting and notifications.
  • Loft OrbitalUsing InfluxDB Cloud to collect and store IoT sensor data from its spacecrafts. The company flies and operates customer payloads with satellite buses, and uses InfluxDB to gain observability into its infrastructure and collect IoT sensor data, including millions of highly critical spacecraft metrics, with the business currently ingesting 10 million measurements every 10 minutes.

Q6. InfluxData has partnered with some of the leading manufacturing providers including PTC and Siemens. How have these partnerships benefitted shared customers?

Paul Dix: A lot goes into these partnerships on both ends, and we work really hard to make and keep them mutually beneficial. One thing that’s a real benefit to customers is when we’re able to integrate InfluxDB with our partner’s platform. Take PTC, for example. InfluxDB is the preferred time series platform for ThingWorx and there is a native integration within the PTC platform itself. That makes it a lot easier for customers to get up and running with InfluxDB, and because it’s already integrated with PTC, they know the two systems are going to play together nicely. Having a solution like that reduces a lot of time and stress that typically occurs in the development process, especially when building out new solutions or retrofitting old ones. 

Beyond PTC, additional industry-leading IIoT platforms including Bosch ctrlXSiemens WinCC OAAkenza IoT and Cogent DataHub have also partnered with InfluxData to use InfluxDB as a supported persistence provider and data historian.

Q7. What’s on the horizon for InfluxData and InfluxDB this year? How do you plan to build on this momentum in IoT?

Paul Dix: IoT will continue to be a priority for our team this year. We’re also looking forward to bringing the benefits of InfluxDB IOx to InfluxDB users. InfluxDB IOx is a new time series storage engine that combines several cutting-edge open source technologies from the Apache Foundation. Written in Rust, IOx uses Parquet for on-disk storage, Arrow for in-memory storage and communication, and Data Fusion for querying. IOx focuses on boundless cardinality and high performance querying. 

IoT and IIoT users will benefit from IOx since they will have the ability to use InfluxDB and its related suite of developer tooling for emerging operational use cases that rely on events, tracing, and other high cardinality data, along with metrics. We’re eager to integrate this project into our existing platform so our IoT users can monitor any number of assets without worrying about the volume or variety of their data.

The arrival of IOx to our cloud platform will enable IoT and IIoT users to store, query, and analyze higher precision data and raw events in addition to more traditional metric summaries. In addition to the real-time replication currently enabled from the edge with Telegraf and InfluxDB 2.0, IOx will enable bulk replication of Parquet files for settings where the edge may not have real-time connectivity. Users working with machine learning libraries in Python will find it easier to connect to and retrieve data at scale for training and predictions because of IOx’s support for Apache Arrow Flight.

Qx. Anything else you wish to add?

Paul Dix: The big takeaway is we’re really excited about the many applications for time series in IoT. Regardless of industry, time series is transforming our ability to understand the activities and output of people, processes and technologies impacting businesses. Nowhere is this more apparent than in IoT or industrial settings.


Paul Dix is the creator of InfluxDB. He has helped build software for startups, large companies and organizations like Microsoft, Google, McAfee, Thomson Reuters, and Air Force Space Command. He is the series editor for Addison Wesley’s Data & Analytics book and video series. In 2010 Paul wrote the book Service-Oriented Design with Ruby and Rails for Addison Wesley’s. In 2009 he started the NYC Machine Learning Meetup, which now has over 7,000 members. Paul holds a degree in computer science from Columbia University.


InfluxData Announces New Customers and Accelerated Momentum in Industrial Data and Internet of Things, February 15, 2022 

Related Posts

On IoT and Time Series Databases. Q&A with Brian Gilmore., October 18, 2021.

Follow us on Twitter: @odbmsorg


Feb 7 22

On Responsible AI. Interview with Ricardo Baeza-Yates.

by Roberto V. Zicari

“Today, AI can be a cluster bomb. Rich people reap the benefits while poor people suffer the result. Therefore, we should not wait for trouble to address the ethical issues of our systems. We should alleviate and account for these issues at the start.” — Ricardo Baeza-Yates.

Q1. What are your current projects as Director of Research at the Institute for Experiential AI of Northeastern University? 

Ricardo Baeza-Yates: I am currently involved in several applied research projects in different stages at various companies. I cannot discuss specific details for confidentiality reasons, but the projects relate predominantly to aspects of responsible AI such as accountability, fairness, bias, diversity, inclusion, transparency, explainability, and privacy. At EAI, we developed a suite of responsible AI services based on the PIE model that covers AI ethics strategy, risk analysis, and training. We complement this model with an on-demand AI ethics board, algorithmic audits, and an AI systems registry.

Q2. What is responsible AI for you? 

Ricardo Baeza-Yates: Responsible AI aims to create systems that benefit individuals, societies, and the environment. It encompasses all the ethical, legal, and technical aspects of developing and deploying beneficial AI technologies. It includes making sure your AI system does not interfere with a human agency, cause harm, discriminate, or waste resources. We build Responsible AI solutions to be technologically and ethically robust, encompassing everything from data to algorithms, design, and user interface. We also identify the humans with real executive power that are accountable when a system goes wrong.

Q3. Is it the use of AI that should be responsible and/or the design/implementation that should be responsible? 

Ricardo Baeza-Yates: Design and implementation are both significant elements of responsible AI. Even a well-designed system could be a tool for illegal or unethical practices, with or without ill intention. We must educate those who develop the algorithms, train the models, and supply/analyze the data to recognize and remedy problems within their systems.

Q4. How is responsible AI different/similar to the definition of Trustworthy AI – for example from the EU High Level Experts group

Ricardo Baeza-Yates: Responsible AI focuses on responsibility and accountability, while trustworthy AI focuses on trust. However, if the output of a system is not correct 100% of the time, we cannot trust it. So, we should shift the focus from the percentage of time the system works (accuracy) to the portion of time it does not (false positives and negatives). When that happens and people are harmed, we have ethical and legal issues.  Part of the problem is that ethics and trust are human traits that we should not transfer to machines.

Q5. How do you know when an application may harm people?

Ricardo Baeza-Yates: This is a very good question as in many cases harm occurs in unexpected ways. However, we can mitigate a good percentage of it buy thinking in the possible problems before they happen. How exactly to do it is an area of current research, but already we can do many things:

  • Work with the stakeholders of your system from the design to the deployment. That implies your power users, your non digital users, regulators, civil society, etc. They should be able to check your hypotheses, your functional requirements, your fairness measures, your validation procedures, etc. They should be able to contest you. 
  • Analyze and mitigate bias in the data (e.g., gender and ethnic bias), in the results of the optimization function (e.g., data bias is amplified or an unexpected group of users is discriminated) and/or in the feedback loop between the system and its users (e.g., exposure and popularity bias).
  • Do an ethical risk assessment and/or a full algorithmic audit, that includes not only the technical part but also the impact of your system on your users.

Q6. What is your take on the EU proposed AI law?

Ricardo Baeza-Yates: Among the many details of the law, I think AI regulation poses two significant flaws: First, we should not regulate the use of technology but focus instead on the problems and sectors in a way that is independent of the technology. Rather than restrict technology that may harm people, we can approach it the same as food or health regulations that work for all possible technologies. Otherwise, we will need to regulate distributed ledgers or quantum computing in the near future.

The second flaw is that risk is a continuous variable. Dividing AI applications into four risk categories (one is implicit, the no risk category) is a problem because those categories do not really exist (see The Dangers of Categorical Thinking.) Plus, when companies self-evaluate, it presents a conflict of interest and a bias to choose the lowest risk level possible. 

Q7. You mentioned that “we should not regulate the use of technology, but focus instead on the problems and sectors in a way that is independent of the technology”.  AI seems to introduce an extra complexity, that is, the difficulty in many cases to explain the output of an AI system. If you are making a critical decision that can affect people based on an AI algorithm for which you do not know why it produced an output, it would be in your analogy equivalent to allow a particular medicine to be sold that is producing lethal side effects. Do we want this?

Ricardo Baeza-Yates: No, of course not. However, I do not think it is the best analogy, as the studies needed for a new medicine must find why the side effects occur and after that you do an ethical risk assessment to approve it (i.e., the benefits of the medicine justify the lethal side effects). But the analogy is better for the solution. We may need something similar to the FDA in the U.S.A. that approves each medicine or device via a 3-phase study with real people. Of course, this is needed only for systems that may harm people.  

Today, AI can be a cluster bomb. Rich people reap the benefits while poor people suffer the result. Therefore, we should not wait for trouble to address the ethical issues of our systems. We should alleviate and account for these issues at the start. To help companies confront these problems, I compiled 10 key questions that a company should ask before using AI. They address competence, technical quality, and social impact. 

Q8. Ethics principles have been established long ago, well before AI and new technology were invented. Laws are often running behind technology, and that is why we need ethics.  Do you agree?

Ricardo Baeza-Yates: Ethics always runs behind technology too. It happened with chemical weapons in World War I and nuclear bombs in World War II, to mention just two examples. And I disagree because ethics is not something that we need, ethics is part of being human. It is associated with feeling disgust, when you know that something is wrong. So, ethics in practice existed before the first laws. Is the other way around, laws exist because there are things so disgusting (or unethical) that we do not want people doing them. However, in the Christian world, Bentham and Austin proposed the separation of law and morals in the 19th century, which in a way implies that ethics applies only to issues not regulated by law (and then the separation boundary is different in every country!). Although this view started to change in the middle of the 20th century, the separation still exists, which for me does not make much sense. I prefer the Muslim view where ethics applies to everything and law is a subset of it. 

Q9. A recent article you co-authored “is meant to provide a reference point at the beginning of this decade regarding matters of consensus and disagreement on how to enact AI Ethics for the good of our institutions, society, and individuals.” Can you please elaborate a bit on this? What are the key messages you want to convey?

Ricardo Baeza-Yates: The main message of the open article that you refer to is freedom for research in AI ethics, even in industry. This was motivated by what happened with the Google AI Ethics team more than a year ago. In the article we first give a short history of AI ethics and the key problems that we have today. Then we point to the dangers: losing research independence, dividing the AI ethics research community in two (academia vs. industry), and the lack of diversity and representation. Then we propose 11 actions to change the current course, hoping that at least some of them will be adopted.


Ricardo Baeza-Yates is Director of Research at the Institute for Experiential AI of Northeastern University. He is also a part-time Professor at Universitat Pompeu Fabra in Barcelona and Universidad de Chile in Santiago. Before he was the CTO of NTENT, a semantic search technology company based in California and prior to these roles, he was VP of Research at Yahoo Labs, based in Barcelona, Spain, and later in Sunnyvale, California, from 2006 to 2016. He is co-author of the best-seller Modern Information Retrieval textbook published by Addison-Wesley in 1999 and 2011 (2nd ed), that won the ASIST 2012 Book of the Year award. From 2002 to 2004 he was elected to the Board of Governors of the IEEE Computer Society and between 2012 and 2016 was elected to the ACM Council. Since 2010 is a founding member of the Chilean Academy of Engineering. In 2009 he was named ACM Fellow and in 2011 IEEE Fellow, among other awards and distinctions. He obtained a Ph.D. in CS from the University of Waterloo, Canada, in 1989, and his areas of expertise are web search and data mining, information retrieval, bias and ethics on AI, data science and algorithms in general.

Regarding the topic of this interview, he is actively involved as expert in many initiatives, committees or advisory boards related to Responsible AI all around the world: Global AI Ethics Consortium, Global Partnership on AI, IADB’s fAIr LAC Initiative (Latin America and the Caribbean), Council of AI (Spain) and ACM’s Technology Policy Subcommittee on AI and Algorithms (USA). He is also a co-founder of OptIA in Chile, a NGO devoted to algorithmic transparency and inclusion, and member of the editorial committee of the new AI and Ethics journal where he co-authored an article highlighting the importance of research freedom on ethical AI.  



AI and Ethics: Reports/Papers classified by topics

-– Ethics Guidelines for Trustworthy AI. Independent High-Level Expert Group on Artificial Intelligence. European commission, 8 April, 2019. Link to .PDF

– WHITE PAPER. On Artificial Intelligence – A European approach to excellence and trust.  European Commission, Brussels, 19.2.2020 COM(2020) 65 final. Link to .PDF


–  Recommendation on the ethics of artificial intelligence. UNESCO, November 2021. LINK

–  Recommendation of the Council on Artificial Intelligence. OECD,22/05/2019 LINK

– How to Assess Trustworthy AI  in practice, Roberto V. Zicari, Innovation, Governance and AI4Good, The Responsible AI Forum Munich, December 6, 2021. DOWNLOAD .PDF: Zicari.Munich.December6,2021

Related Posts

On Responsible AI. Interview with Kay Firth-Butterfield, World Economic Forum. ODBMS Industry Watch. September 20, 2021

Follow us on Twitter: @odbmsorg

Dec 10 21

On AI, Cloud, and Data & Analytics. Interview with Sastry Durvasula and John Almasan

by Roberto V. Zicari

“People are our biggest asset, and we have been continually investing in and advancing our People digital and data science capabilities.” –Sastry Durvasula.

I sat down with Sastry Durvasula, Global Chief Technology & Digital Officer, and John Almasan, Distinguished Engineer, Technology & Digital Leader, at McKinsey to learn how the firm is leveraging AI, cloud, and data & analytics to power digital colleague experiences and client service capabilities in the new normal of hybrid work. 


Q1: Can you explain the role of technology and digital capabilities at McKinsey? What is your strategy for advancing the firm in the new normal? 

SD: The firm has experienced significant growth over the last few years, with nearly 40K colleagues serving clients across 150 global locations. Our technology and digital strategy is focused on powering the future of the firm with a range of innovative capabilities, platforms, and experiences. Our strategic shifts include doubling our innovation in digital client service, firm-wide cloud transformations of all our platforms and applications, next-gen capabilities for AI and knowledge management, and leading-edge colleague-facing technology and hybrid experiences.  

As per our recent study, Cloud is a trillion dollar opportunity for businesses, and we are very actively working with our clients to advance their cloud journey. Earlier this year, we acquired cloud consultancy Candid and their accomplished team of 100+ technical experts, helping us accelerate our clients’ end-to-end cloud transformations.

5K+ technologists at the firm are organized across our global guilds, which include Design, Product Management, Engineering & Architecture, Data Science, Cyber, etc., and they provide digital transformation solutions to our clients and development of assets and internal capabilities. Our agile Ways of Working (WoW) and build-buy-partner models are central to our product development, empowering teams to innovate at speed and scale, with psychological safety to experiment and learn. 

Q2: What roles do cloud, data science, and AI play in your strategy? Can you provide some examples?

SD: AI and data science are central to this strategy in both serving our clients and transforming our internal capabilities. Thanks to the significant technological advancements in AI/ML powering our data science capabilities, we are unlocking innovative client-service and colleague digital experiences.  We are building and advancing a hybrid and multi-cloud ecosystem to power distinctive solutions and assets for our clients, which includes strategic partnerships and integrations with leading industry hyperscalers and software products.

As an example, on the client-service side, we are completely transforming our core knowledge and expertise platforms leveraging cloud-native technologies and AI/ML. Similarly, and the McKinsey Insights mobile app serve up strategic insights, analytics, studies, and content to a broad range of users across the globe — including the C-suite and aspiring students alike. Our cloud transformation of these iconic platforms enables innovation, scale, and speed in publishing, smart search, audience engagement, subscriber experience, and reach & relevance efforts.

On the colleague experience side, AI and AR/VR powered digital workplace capabilities, colleague-facing chatbots, and hybrid-in-a-box tools are a huge focus, as well as predictive and proactive services to detect and service technology issues for our global workforce. People analytics, recruiting, and onboarding journeys are also key areas where we are leading with distinctive capabilities and tools supported by data and AI-driven HR, allowing us to achieve a substantial step up from HR 2.0 to HR 3.0. 

Q3: Can you elaborate on knowledge and expertise management, and the role AI plays in shaping this space at the firm? 

SD: We have a unique and proprietary knowledge management platform that codifies decades of wisdom and integrates the firm’s extensive insights, studies, industry domain content, knowledge, structured and unstructured data, and analytics with a wide range of artifacts using secure and role-based access. This platform is widely used by our colleagues across the globe, creating profound impact to our clients as well as our firm’s business functions. We have been advancing this platform and the surrounding ecosystem by leveraging AI and cloud technologies for semantic searches, auto-curated and personalized results. Important to mention are our AI-powered chatbots with NLP, which provide valuable intelligence for our colleagues in various industry practices. Using graph database technologies and data science modeling for contextual understanding significantly enhances our knowledge search capabilities, including video scanning, speech to text, summarization, and the ability to index topics of interest. 

For finding expertise, we are also making use of ML ontologies to uncover behaviors and relationships between various types of “skills” and Subject Matter Experts (SMEs) to manage, govern, and dynamically connect colleagues with the best domain experts based on desired skills and/or knowledge needs. Our colleague-facing “Know” mobile app provides on-the-go access to our curated knowledge databases and domain experts, integrating with all our internal communication channels and collaboration tools, and AI-driven recommendations. 

Q4: Can you expand a little bit more on how AI and data science are powering the HR 3.0 agenda?

SD: People are our biggest asset, and we have been continually investing in and advancing our People digital and data science capabilities. For example: 

People analytics play a vital role, and we consider them a stairway to impact with growing maturity in data, engineering, and data science capabilities. Our transformation to HR 3.0 relies on globally rich datasets, cloud capabilities, advanced analytics, and first-class data science and engineering teams, along with integrated operational processes. By making use of hybrid cloud-based graphs databases, R, Python, Julia, etc. to join disparate sources of data, our data engineering teams assemble not only one of the highest data quality ecosystems in the firm, but also a very resilient one. Being aware of the fact that, in general, 80% of data science effort is with data cleaning, our strategy removes such roadblocks and ensures an analytically ready, understandable data solution, so our data scientists can be effective in delivering people analytics rather than data curation and sanitization. 

On the recruiting and onboarding front, given our scale of hiring talent every year across the globe — both fresh talent from innovative academic institutions and experienced hires from various industries with a wide range of skills— we have significantly invested in AI-driven capabilities for identifying, recruiting, and hiring talented individuals. As an example, our intelligent NLP driven “Resume Processing Review,” built with the use of deep learning models, enables us to process over 750,000 resumes annually and to identify characteristics of successful applicants. By making use of intelligent guidance with dynamic customizable questions, activities like scoring, prioritizing, and sorting candidates are simplified while the overall process timeline is tremendously reduced. Ensuring that solutions avoid AI bias in recruiting is also a major focus. Additionally, these AI capabilities are beneficial for enabling a smooth and personalized onboarding experience for candidates.

Our recent report the workforce of the future highlights the emerging trends and insights, which include flexibility and continuous learning opportunities to foster and retain an engaged workforce. Our “Job-to-Job Matching” ML system accelerates the discovery and matching of jobs with those looking for another opportunity. AI-driven learning is another big priority, which enables highly personalized learning tracks for our colleagues based on their skills, engagements, and aspirations as part of our proprietary platforms.

Q5: Can you share some insights and details on your technology ecosystem and how it powers your internal and external platforms and products?

JA: To power our global product development solutions and innovations, we focused on transforming the firm’s core technology architecture with a more robust yet flexible 7-layer stack. This new framework is based on hybrid and multi-cloud platforms, secure-by-design engineering capabilities, and futuristic tools to propel delivery at scale and speed. 

Developer experience is a core focus, providing premium software engineering tools, APIs, and services across hyperscalers. Our modularized platform as a service, consolidated into a service catalog, allows developers the flexibility and agility to customize complex computing and infrastructure designs to address any internal and external tech ecosystem. Our AI driven CI/CD pipeline enables interoperability across a wide range of technologies, and identifies in real-time SDLC vulnerabilities to reduce potential risk and improve the overall software quality. Data scientists play a vital role across a range of studies and client-service. The stack includes a specialized studio for data scientists with state-of-the-art MLOps and AIOps tools and libraries. 

We have developed a cloud security framework, enabling our E2E solutions to be built with secure-by-design and “zero trust” principles in mind, meeting or exceeding the industry “security posture” standards and regulatory needs. Lastly, our global presence demands proactive planning and innovative technologies to ensure that our internal and external platforms and products exist in ecosystems that comply with various country and region-level regulations.  

Q6: Tell me about how AI powered colleague experiences helped during the pandemic. 

JA:  Digital colleague experience has been more crucial than ever during the pandemic and in a hybrid world. We are employing AI to enable seamless capabilities, tools, and rapid response time to client-service requests and issue handling. 

First, let me start with CASEE (Caring And Smart Engineered Entity), our colleague-facing chatbot, which provides intelligent technology support and services across the globe. CASEE leverages conversational NLP, leading open source frameworks, and off-the-shelf tool integrations with the ability to improvise from every interaction and support request. It has been a huge help during the pandemic, when our global workforce switched to remote with an unprecedented spike in demand while we were also dealing with the effects on our global servicing teams. As an example, CASEE was specifically trained in less than a week to respond and handle 90% of the questions regrading remote working and common device and network issues. It has also been integrated with our digital collaboration tools as well as incident response systems. 

Another example is the intelligent automation of our Global Helpdesk capabilities, which we turbo-charged during the pandemic and are widely recognized in the industry and by our clients as a go and see reference. We’ve augmented our tools with AI driven services that can intelligently detect hardware and/or software deterioration on our users’ machines and can proactively fix or mitigate these problems. The system is capable of initiating a laptop replacement, perform driver updates, trigger software patching, or even remove or stop glitched software. 

Q7: I heard about the firm’s open source efforts. Can you elaborate?

JA: We recognized the fact that McKinsey tech has a great opportunity to support and to give back to the Open Source Community. Kedro, for example, is a powerful ML framework for creating reproducible, maintainable, and modular data science code. It seamlessly blends software engineering concepts like modularity, separation of concerns, and versioning, and then applies them to ML code. Kedro proved to be one of our most valuable ML solutions, and it was successfully used across more than 50 projects to date, providing a set of best practices and a revolutionized workflow for complex analytics projects. We’ve open-sourced Kedro to support both our clients and non-clients alike, and to foster ML and software engineering innovation within the community of developers. Our approach starts with our global guilds first, and then contributing to open source. Stay tuned for more exciting developments in this space.

Q8: How are you attracting and developing talent in this highly competitive market?

SD:  As you can see, we have some very exciting and interesting problems across a wide-range of technologies, industries, geographies, and next horizon initiatives. We are constantly focused on attracting inquisitive and continuous learners. We have also been fostering deep strategic relationships with universities and industry networks across the globe.  

We have been expanding our global hubs, adding new locations and advancing our hybrid/remote workforce capabilities across the US, Europe, Asia, and Latin America with several hundred active open jobs as we speak. We are also opening a major new center in Atlanta, which will be home to more than 600 technologists and professionals, and with strong diversity, inclusivity, and sense of community. We are partnering with leading non-profits including Girls in Tech globally, Chzechitas in Prague, and Black Girls Code and Historically Black Colleges and Universities (HBCUs) in the US.

We launched personalized development programs for our colleagues, including certifications in cloud, cyber, and other emerging technologies. Over 60% of our developers are certified in one or more cloud ecosystems. We’re proud of being recognized by Business Insider as one of the 50 most attractive employers for engineering and technology students around the world. At #19, we are the highest-ranked professional services firm on the list.  


Sastry Durvasula is the Global Chief Technology and Digital Officer, and Partner at McKinsey. He leads the strategy and development of McKinsey’s differentiating digital products and capabilities, internal and client-facing technology, data & analytics, AI/ML and Knowledge platforms, hybrid-cloud ecosystem, and open-source efforts. He serves as a senior expert advisor on client engagements, co-chairs the Firm’s technology governance board, and leads strategic partnerships with tech and digital companies, academia, and research groups.

Previously, Sastry held Chief Digital Officer, Chief Data & Analytics, CIO, and global technology leadership roles at Marsh and American Express and worked as a consultant at Fortune Global 500 companies, with a breadth of experience in the technology, payments, financial services, and insurance domains.

Sastry is a strong advocate for diversity, chairs DE&I at McKinsey’s Tech & Digital, and is on the Board of Directors for Girls in Tech, the global non-profit dedicated to eliminating the gender gap. He championed industry-wide initiatives focused on women in tech, including #ReWRITE and Half the Board. He holds a Master’s degree in Engineering, is credited with 30+ patents, and has been the recipient of several honors and awards as an innovator and industry influencer. 

John Almasan is a Distinguished Engineer, Technology & Digital Leader at McKinsey. He is a hands-on, accomplished technology executive with 20+ years of experience in leading global tech teams and building large-scale data, analytics, and cloud platforms. He has deep expertise in hybrid multi-cloud big data engineering, machine learning, and data science. John is currently focused on engineering solutions for the firm’s transformation and the build of the next gen data analytics platform.

Previously John held engineering leadership roles with Nationwide Insurance, American Express, and Bank of America focusing on cloud, data & analytics, AI and ML in financial services and insurance domains. He gives back through his pro bono consultancy work for the Arizona Counterterrorism Center, the Rocky Mountain Information Center, and as a member of the Arizona State University’s Board of Advisors.

John holds a Master’s degree in Engineering, a Master of Public Administration, and a Doctor of Business Administration. He is an AWS Educate Cloud Ambassador, Certified AWS Data Analytics & ML engineer, GCP ML Certified. John is credited with 10+ patents and has been the recipient of several awards.


The state of AI in 2021– December 8, 2021 | Survey. The results of our latest McKinsey Global Survey on AI indicate that AI adoption continues to grow and that the benefits remain significant— though in the COVID-19 pandemic’s first year, they were felt more strongly on the cost-savings front than the top line. As AI’s use in business becomes more common, the tools and best practices to make the most out of AI have also become more sophisticated

How COVID-19 has pushed companies over the technology tipping point—and transformed business forever. October 5, 2020 | Survey

The search for purpose at work, June 3, 2021 | Podcast. By Naina Dhingra and Bill Schaninger. In this episode of The McKinsey Podcast, Naina Dhingra and Bill Schaninger talk about their surprising discoveries about the role of work in giving people a sense of purpose. An edited transcript of their conversation follows.

Related Posts

On Responsible AI. Interview with Kay Firth-Butterfield, World Economic Forum. ODBMS Industry Watch, September 20, 2021

Follow us on Twitter: @odbmsorg


Nov 2 21

On Designing and Building Enterprise Knowledge Graphs. Interview with Ora Lassila and Juan Sequeda

by Roberto V. Zicari

“The limits of my language mean the limits of my world.” – Ludvig Wittgenstein

I have interviewed Ora Lassila, Principal Graph Technologist in the Amazon Neptune team at AWS and Juan Sequeda, Principal Scientist at  We talked about knowledge graphs and their new book.


Q1. You wrote a book titled “Designing and Building Enterprise Knowledge Graphs”. What was the main motivation for writing such a book?

Ora Lassila and Juan Sequeda:  We wanted to tackle the topic of knowledge graphs more broadly than just from the technology standpoint. There is more than just technology (e.g., graph databases) when it comes to successfully building a knowledge graph. 

Time and time again we see people thinking about knowledge graphs and jumping to the conclusion that they just need a graph database and start there. Not only is there more technology you need, but there are issues with people, processes, organizations, etc.

Q2. What are knowledge graphs and what are they useful for?

Ora Lassila and Juan Sequeda:  We see knowledge graphs as a vehicle for data integration and to make data accessible within an organization. Note that when we say “accessible data”, we really mean this: accessible data = physical bits + semantics. The semantics part is really important, since no data is truly accessible unless you also understand what the data means and how to interpret it. We call this issue the “knowledge/data gap”; Chapter 1 of our book gets deep into this.

You could say that knowledge graphs are a way to “democratize” data: make data more accessible and understandable to people who are not technology experts.

Q3. Why connecting relational databases with knowledge graphs?

Ora Lassila and Juan Sequeda:  Frankly, the majority of enterprise data is in relational databases, so this seemed like a very good way to scope the problem. At the beginning of our book we show examples of how data is connected today and frankly, it’s a pain. And it’s not just a technical pain, there are important social and organizational aspects to this.

Juan Sequeda:  Understanding the relationship between relational databases and the semantic web/knowledge graphs has been my quest since my undergraduate years. The title of my PhD dissertation is “Integrating Relational Databases with the Semantic Web”. Therefore I can say that this is a passion of mine. 

Q4. Does it make more sense to use a native graph database instead or a NoSQL database?

Ora Lassila and Juan Sequeda:  There is always the question “why use X instead of Y?”… and the answer almost always is “it depends”. We even bring this up in the foreword: As computer scientists we understand that there are many technologies that can be used to solve any particular problem. Some are easier, more convenient, and others are not. Just because you can write software in assembly language does not mean you shouldn’t seek to use a high-level programming language. Same with databases: find one that suits your purpose best.

Q5. What are the typical roles within an organization responsible for the knowledge graph?

Ora Lassila and Juan Sequeda:  Organizations really need to get into the mindset of treating data as a product. When you acknowledge this, you realize you need the roles for designing, implementing and managing products, in this case data products. We see upcoming roles such as data product managers and knowledge scientists (i.e. Knowledge Engineers 2.0). We get into this in Chapter 4 of our book.

Q6. Data and knowledge are often in silos. Sharing knowledge and data is sometimes hard in an enterprise. What are the technical and non technical reasons for that?

Ora Lassila and Juan Sequeda:  Technical problems are solvable, and many solutions exist. That said, we think knowledge graphs are really addressing this issue nicely.

The non-technical issues are an interesting challenge, and in many ways more difficult: people and process, organizational structure, centralization vs decentralization, etc. One specific issue that shows up all the time is this: If you want to share knowledge within a broader organization, you have to cross organizational boundaries, and that lands you on someone else’s “turf”. There is a great deal of diplomacy that is needed to tackle these kinds of issues. 

Q7. When is it more appropriate to use RDF graph technologies instead of native property graph technologies?

Ora Lassila and Juan Sequeda:  First, we object to the notion of “native” when it comes to property graphs, they are no more native than RDF graphs.

These are two slightly different approaches to building graphs. Ultimately, the question is not all that interesting. A more interesting question is: When should you use a graph as opposed to something else? If you do decide to use a graph, there are a lot of considerations and modeling decisions before you even come to the question of RDF vs. property graphs.

Of course, RDF is better suited to some situations (e.g., when you use external data, or have to merge graphs from different sources). Try using property graphs there and you merely end up re-inventing mechanisms that are already part of RDF. On the other hand, property graphs often appeal more to software developers, thanks to available access mechanisms and programming language support (e.g., Gremlin).

Q8. How can enterprises successfully adopt knowledge graphs to integrate data and knowledge, without boiling the ocean?

Ora Lassila and Juan Sequeda:  First of all, you can’t build enterprise knowledge graphs in a “boil the ocean” approach. No chance in hell. You first need to break the problem in smaller pieces, by business units and use cases. This ultimately is a people and process problem. The tech is already here.

That said, there is a certain “build it and they will come” aspect to knowledge graphs. You should think of them more as a platform rather than as an application. Start by knowing some use cases, and gradually generalize and widen your scope. But you need to be solving some pressing problems for the business. Spend time understanding the problems, the limitations of their current solutions (assuming they are somewhat viable) and finding a champion (i.e. “if you can solve this problem better/faster/etc, I’m all ears!”). Also try to avoid educating on the technology: Business units don’t care if their problem is solved with technology A, B or C… all they want is for their problem to be solved.

Q9. Knowledge graphs and AI. Is there any relationships between them?

Ora Lassila and Juan Sequeda:  Yes. Knowledge Graphs are a modern solution to a long-time (and in some ways, “ultimate”) goal in computer science: to integrate data and knowledge at scale. For at least the past half century, we’ve seen independent and integrated contributions coming from the AI community (namely knowledge representation, a subfield of classical AI) and the data management community.  See section 1.3 of the book.

Qx Anything else you wish to add?

Ora Lassila and Juan Sequeda:  We see a lot of what Albert Einstein gave as the definition of insanity: Doing the same thing over and over, and expecting different results. We need to do something truly different. But this is challenging for many reasons, not least because of this: 

“The limits of my language mean the limits of my world.” – Ludvig Wittgenstein

For example, if SQL is your language, it may be very hard for you to see that there are some completely different ways of solving problems (case in point: graphs and graph databases).

Another challenge is that there are hard people and process issues, but as technologists we are wired to focus on technology, and to seek how to scale and automate. 

Finally, we think the “graph industry” needs to evolve past the RDF vs. property graphs issue. Most people do not care. We need graphs. Period.


Dr. Ora Lassila, Principal Graph Technologist in the Amazon Neptune team at AWS, mostly focusing on knowledge graphsEarlier, he was a Managing Director at State Street, heading their efforts to adopt ontologies and graph databases. Before that, he worked as a technology architect at Pegasystems, as an architect and technology strategist at Nokia Location & Commerce (aka HERE), and prior to that he was a Research Fellow at the Nokia Research Center Cambridge. He was an elected member of the Advisory Board of the World Wide Web Consortium (W3C) in 1998-2013, and represented Nokia in the W3C Advisory Committee in 1998-2002. In 1996-1997 he was a Visiting Scientist at MIT Laboratory for Computer Science, working with W3C and launching the Resource Description Framework (RDF) standard; he served as a co-editor of the RDF Model and Syntax specification.

Juan Sequeda, Principal Scientist at  He holds a PhD in Computer Science from The University of Texas at Austin. Juan’s goal is to reliably create knowledge from inscrutable data. His research and industry work has been on designing and building Knowledge Graph for enterprise data integration. Juan has researched and developed technology on semantic data virtualization, graph data modeling, schema mapping and data integration methodologies. He pioneered technology to construct knowledge graphs from relational databases, resulting in W3C standards, research awards, patents, software and his startup Capsenta (acquired by Juan strives to build bridges between academia and industry as the current co-chair of the LDBC Property Graph Schema Working Group, past member of the LDCB Graph Query Languages task force, standards editor at the World Wide Web Consortium (W3C) and organizing committees of scientific conferences, including being the general chair of The Web Conference 2023. Juan is also the co-host of Catalog and Cocktails, an honest, no-bs, non-salesy podcast about enterprise data.


Designing and Building Enterprise Knowledge Graphs Synthesis Lectures on Data, Semantics, and Knowledge August 2021, 165 pages, ( Juan Sequeda,; Ora Lassila, Amazon 

Related Posts

Fighting Covid-19 with Graphs. Interview with Alexander Jarasch ODBMS Industry Watch, June 8, 2020

Follow us on Twitter: @odbmsorg


Sep 20 21

On Responsible AI. Interview with Kay Firth-Butterfield,World Economic Forum.

by Roberto V. Zicari

“I think that many companies need to understand that their customers are worried about the use of AI and then act accordingly. I believe they should set up ethics advisory boards and then follow the advice or internal teams to advise on what they should do and take that advise.”

–Kay Firth-Butterfield

I have interviewed Kay Firth-Butterfield, Head of Artificial Intelligence and member of the Executive Committee at the World Economic Forum. We talked about Artificial Intelligence (AI) and in particular, we discussed responsible AI,  trustworthy AI and AI ethics.


Q1. You are the Head of Artificial Intelligence and a member of the Executive Committee at the World Economic Forum. What is your mission at the World Economic Forum? 

Kay Firth-Butterfield: We are committed to improving the state of the world. 

Q2. Could you summarize for us what are in your opinion the key aspects of the beneficial and challenging technical, economic and social changes arising from the use of AI? 

Kay Firth-Butterfield: The potential benefits of AI being used across government, business and society are huge. For example using AI to help find ways of educating the uneducated, giving healthcare to those without it and helping to find solutions to climate change. Both embodied in robots and in our computers it can help keep the elderly in their homes and create adaptive energy plans for air conditioning so that we use less energy and help keep people safe. Apparently some 8800 people died of heat in US last year but only around 450 from hurricanes. Also, it helps with cyber security and corruption. On the other side, we only need to look at the fact that over 190 organisations have created AI principles and the EU is aiming to regulate use of AI and the OHCHR has called for a ban on AI which affects human rights to know that there are serious problems with the way we use the tech, even when we are careful.

Q3. The idea of responsible AI is now mainstream. But why when it comes to operationalizing this in the business, companies are lagging behind? 

Kay Firth-Butterfield: I think they are worried about what regulations will come and the R&D which they might lose from entering the market too soon. Also, many companies don’t know enough about the reasons why they need AI. CEOs are not envisaging the future of the company with AI which, if available is often left to a CTO. It is still hard to buy the right AI for you and know whether it is going to work in the way it is intended or leave an organisation with an adverse impact on its brand. Boards often don’t have technologists and so they can help the CEO think through the use of AI for good or ill. Finally, its is hard to find people with the right skills. I think this may be helped by remote working when people don’t have to locate to a country which is reluctant to issue visas.

Q4. What is trustworthy AI? 

Kay Firth-Butterfield: The design, development and use of AI tools which do more good for society than they do harm.

Q5. The Forum has developed a board tool kit to help board member on how to operationalize AI ethics. What is it? Do you have any feedback on how useful is it in practice?

Kay Firth-Butterfield:  It provides Boards with information which allows they to understand how their role changes when their company uses AI and therefore gives them the tools to develop their governance and other roles to advise on this complex topic. Many Boards have indicated that they have found it useful and it has been downloaded more than 50,000 times.

Q6. Let´s talk about standards for AI. Does it really make sense to standardize an AI system? What is your take on this?

Kay Firth-Butterfield:  I have been working with the IEEE on standards for AI since 2015, I am still the Vice-Chair. I think that we need to use all types of governance for AI from norms to regulation depending on risk. Standards provide us with an excellent tool in this regard.

Q7. There are some initiatives for Certification of AI. Who has the authority to define what a certification of AI is about? 

Kay Firth-Butterfield:  At the moment there are many who are thinking about certification. There is not regulation and no way of being certified to certify! This needs to be done or there will be a proliferation and no-one will be able to understand which is good and which is bad. Governments have a role here, for example Singapore’s work on certifying people to use their Model AI Governance Framework.

Q8. What kind of incentives are necessary in your opinion for helping companies to follow responsible AI practices? 

Kay Firth-Butterfield:  I think that many companies need to understand that their customers are worried about the use of AI and then act accordingly. I believe they should set up ethics advisory boards and then follow the advice or internal teams to advise on what they should do and take that advise. In our Responsible Use of Technology work we have considered this in detail.

Q9. Do you think that soft government mechanisms would be sufficient to regulate the use of AI or would it be better to have hard government mechanisms? 

Kay Firth-Butterfield:  both

Q10. Assuming all goes well, what do you think a world with advanced AI would look like? 

Kay Firth-Butterfield:   I think we have to decide what trade offs of privacy we want to allow for humans to develop harnessing AI. I believe that it should be up to each of us but sadly one person deciding to use surveillance via a doorbell surveills many. I believe that we will work with robots and AI so that we can do our jobs better. Our work on positive futures with AI is designed to help us better answer this question. Report out next month! Meanwhile here is an agenda.


Kay Firth-Butterfield is a lawyer, professor, and author specializing in the intersection of business, policy, artificial intelligence, international relations, and AI ethics. 

Since 2017, she has been the Head of Artificial Intelligence and a member of the Executive Committee at the World Economic Forum and is one of the foremost experts in the world on the governance of AI. She is a barrister, former judge and professor, technologist and entrepreneur and vice-Chair of The IEEE Global Initiative for Ethical Considerations in Artificial Intelligence and Autonomous Systems. She was part of the group which met at Asilomar to create the Asilomar AI Ethical Principles, is a member of the Polaris Council for the Government Accountability Office (USA), the Advisory Board for UNESCO International Research Centre on AI and AI4All

She regularly speaks to international audiences addressing many aspects of the beneficial and challenging technical, economic and social changes arising from the use of AI.


  1. Empowering AI Leadership: An Oversight Toolkit for Boards of Directors. World Economic Forum.
  2. Ethics by Design: An organizational approach to responsible use of technology.  White Paper December 2020. World Economic Forum.
  3. A European approach to artificial intelligence, European Commission.
  4. The IEEE Global Initiative for Ethical Considerations in Artificial Intelligence and Autonomous Systems

Related Posts

On Digital Transformation and Ethics. Interview with Eberhard Schnebel. ODBMS Industry Watch. November 23, 2020

On the new Tortoise Global AI Index. Interview with Alexandra Mousavizadeh. ODBMS Industry Watch,  April 7, 2021

Follow us on Twitter: @odbmsorg